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1 Introduction

Homophily is the robust tendency of people to associate more with those who are similar to

them on some dimensions than with those who are not. This tendency is seen when similarity

is measured based on a variety of different characteristics, including ethnicity, age, religion,

and occupation — as documented in a large literature in sociology (see McPherson, Smith-

Lovin and Cook (2001) for a survey). Homophily produces a signature in the structure of

a network: a pattern of thick concentrations of links within groups of individuals who have

shared characteristics and sparser connections between such groups.

Homophily is more than a statistical curiosity about networks. Intuition suggests that

the structural features caused in networks by homophily have important consequences for

processes of real economic significance, such as the travel of news in a society or access to

information about jobs. The segregation patterns in a network would mean that there would

tend to be relatively more communication within groups of similar individuals than across

groups. Although there is some work that documents the impact of homophily on behavior

and outcomes (e.g., see Jackson (2007) and Golub and Jackson (2011)), we are far from a

general understanding of homophily’s consequences, and furthering that understanding is

the goal of this paper.

There is a related conceptual question. While it is intuitively clear what homophily ba-

sically is, it is not obvious how best to measure it. Social networks are inherently complex

and multidimensional objects, and so capturing homophily concisely is a challenge, espe-

cially in settings with a great deal of heterogeneity in the sizes and compositions of various

groups, and also in the traits that distinguish them. There are several measures that have

been proposed in the literature, all seeking to capture different aspects of homophily (e.g.,

Coleman (1985), Echenique and Fryer (2007)). While these approaches offer definitions that

capture certain intuitively appealing aspects of homophily (Echenique and Fryer do this in a

precise axiomatic framework), it is not entirely obvious whether those are substantively the

important dimensions.

Our approach seeks to provide foundations for measuring homophily based on its conse-

quences for a process of interest. More specifically, we seek to identify the measure of inter-

versus intra-group connectivity that affects the speed of a learning process. We are not aware

of work previous to Golub and Jackson (2011) taking a process-based approach to measuring

homophily. In this article, we continue the study begun in that paper by elaborating on and

strengthening some of its results about a new homophily measure.

As mentioned above, we analyze how homophily — through the segregation patterns it

induces — influences a particular process of learning taking place on a network. The learning

model ties down exactly how network structure impacts outcomes, and confirms the intuition

that learning takes longer in networks with homophily. Moreover, the formulas that describe

2



that relationship reveal how one should measure the structural consequences of homophily

if one is interested in how it affects learning in that context.

The learning process we focus on is the classic DeGroot model of learning by repeated

averaging of neighbors’ signals of French (1956), Harary (1959), and DeGroot (1974). This

model of learning has been used in sociology, statistics, and economics, and has been moti-

vated as boundedly rational aggregation of dispersed information (DeMarzo, Vayanos, and

Zwiebel (2003)). This process, under mild conditions, leads a society to converge to a con-

sensus opinion after a sufficiently long period of communication.

It turns out that homophily dramatically slows down this type of learning. Moreover,

the extent to which it does so can be quantified explicitly in terms of simple formulas that

involve the network’s structure. To do this, in Golub and Jackson (2011), we introduced a

measure of network segregation called degree-weighted homophily (DWH) and showed that it

provided a lower bound on the time to consensus. The DWH of a network can be written as

a simple and interpretable formula in terms of network structure – in particular, the relative

quantities of within-group and across-group links, appropriately weighted by the degrees of

the agents participating in those links. This explicit approach contrasts with well-known

results, which we discuss below, that pin down the convergence of this learning process in

terms of certain eigenvalues of an interaction matrix. Eigenvalue measures of segregation are

defined implicitly as solutions of a certain equation have some intuition behind them, but

it is hard to know exactly what features of the network determine the relevant eigenvalue.

With degree-weighted homophily, on the other hand, it is very clear what goes into the

computation. For example, an agent’s degree (number of connection) matters for his or her

contributions to homophily. Perhaps surprisingly, the homophily of agents with low degree

matters more than that of agents with high degree.

This explicit approach to characterizing the convergence of the learning process in terms

of network structure relates to a literature in mathematics on how segregation affects random

walks on networks (Diaconis and Stroock, 1991; Chung et al., 2004; Montenegro and Tetali,

2006). In this article, we focus on the quality of the DWH bound and its relationship to the

previous state of the art. First, we show that the bound is asymptotically tight — that is,

in certain cases it provides an exact characterization of convergence time rather than just

one bound. Second, it is better than existing bounds based on the Cheeger inequality in an

important class of random networks. Finally, we give a new result toward a complementary

upper bound on convergence time in terms of DWH, with the goal of relating the learning

process to homophily as closely as possible. We find that DWH is more closely related to the

convergence speed of the linear updating process than previously known. The fact that DWH

tightly tracks a key consequence of homophily – namely, slowdowns in updating processes –

motivates its relevance as a useful homophily measure.
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2 Model, Definitions, and Basic Results

2.1 Networks

We begin by reviewing basic network definitions.1 Given a set of n nodes N = {1, . . . , n}, a

network is represented via its adjacency matrix: a symmetric n-by-n matrix A with entries

in {0, 1}. The interpretation is that Aij = Aji = 1 indicates that nodes i and j are linked,

and we restrict attention to undirected networks. Let di(A) =
∑n

j=1 Aij denote the degree

of node i, which is the number of agents i is linked to. Let D(A) =
∑n

i=1 di be the sum

of degrees in the network. A walk in A is a sequence of nodes i1, i2, . . . , iK , not necessarily

distinct, such that Aikik+1
> 0 for each k ∈ {1, . . . , K − 1}. A cycle is a walk i1, i2, . . . , ik

such that i1 = iK . The length of a cycle with K (not necessarily distinct) entries is defined

to be k − 1. A cycle is simple if the only node appearing twice in the sequence is the

starting (and ending) node. The matrix A is connected (also known as irreducible) if there

is path in A from any node to any other node. A matrix is aperiodic if the greatest common

divisor of the lengths of all simple cycles is 1. In the undirected case where Aij = Aji, the

matrix A is aperiodic if and only if it is not possible to divide the nodes into two nonempty

disjoint subsets so that links only go from one subset to the other (i.e., if and only if it is

not bipartite).

2.2 The Learning Process

2.2.1 A Version of the DeGroot Model

Given a network A, let T(A) be defined by Tij(A) = Aij/di. Beginning with some initial

belief vector b(0) ∈ [0, 1]n, let

b(t) = T(A)b(t− 1)

for all t ≥ 1. That is, agents form today’s beliefs by taking the average of neighbors’ beliefs

yesterday, where an agent can be his own neighbor. It is immediate that then

b(t) = T(A)tb(0).

The DeGroot model captures a boundedly rational updating process such that agents

repeatedly form new beliefs (or behaviors) by averaging their neighbors’ decisions in the

past period. This process has many nice properties and can even lead agents to efficiently

1Our definitions here follow closely the ones in Golub and Jackson (2010) and Golub and Jackson (2011).
Indeed, all the basic notions in Section 2 of this paper are defined there, but we repeat the definitions here
to keep the exposition as self-contained as possible. See those papers and also Jackson (2008), especially
Chapters 2 and 8, for more detailed discussions of the basic concepts.
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aggregate the signals in the society, despite its simplicity (e.g., see Golub and Jackson (2010)

for more discussion on these points). This process also can be interpreted as choosing an

action as a (myopic) best reply in a case where agents wish to match the average behavior

of their neighbors, as discussed in Golub and Jackson (2011).

2.2.2 Convergence

The network A is said to converge to a consensus if, for any b(0) ∈ [0, 1]n, there is some b

so that limt→∞ bi(t) = b for every i.

A result from Markov chain theory can be adapted to this setting to conclude that this

process converges to a consensus (for any initial beliefs) if and only if two conditions hold.

The first condition is that the network A is connected. This is an obvious condition, as

otherwise differences can remain between separate components. The second is that the

network is aperiodic, or — in this setting, equivalently — not bipartite. This prevents a

situation in which beliefs can oscillate forever. Aperiodicity is a very weak condition, and

it suffices for at least one agent i to be linked to him or herself, so that Aii = 1 (which

can be interpreted as placing some weight on his or her own past beliefs or behavior in the

updating, a quite natural case). The result is stated formally as follows, and the (standard)

proof follows directly from results in Golub and Jackson (2010).

Proposition 1. The network A converges to a consensus if and only if it is strongly con-

nected and aperiodic.2 The steady state beliefs are a weighted average of initial beliefs equal

to
∑

i
di(A)
D(A)

bi(0).

2.2.3 The Speed of Convergence

We are primarily concerned with the speed of learning — how quickly do beliefs converge to

their limit when they do converge.

To measure this, we study how many periods it takes for beliefs to get close to their

limiting values. The measure of deviation from consensus (which is necessary to define

“close”) has a simple interpretation. Imagine the agents talking to each other at each period.

At each moment in time, there are two messages sent across each link. Let m(t) be this

vector of messages for some ordering of the directed links. We define the distance from

consensus at time t to be the root mean square distance of m(t) from its limit m(∞).

Mathematically, we write this in a standard way. First, given two vectors v and u, as

well as a vector w of weights, let ‖v − u‖w = [
∑

i wi(vi − ui)
2]

1/2
. The distance of beliefs

2Given the symmetry of links in our setting here, connectedness and strong connectedness are equivalent.
Aperiodicity is still required in addition, as connectedness and symmetry together still do not imply that
there exists an odd-length cycle.
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at time t from consensus is then ‖T(A)tb − T(A)∞b‖s(A), where we use the weights s(A)

defined by si(A) = di(A)
D(A)

. This is equivalent to the “messages” interpretation because an

agent with degree di(A) sends a share of the messages in the network given exactly by his

or her degree divided by the sum of degrees; this is related to his “influence” on final beliefs

in the formula of Proposition 1 above.

The consensus time is defined as the time it takes for the distance of beliefs from consensus

to get below ε.

Definition 1. The consensus time to ε > 0 of a connected network A is

CT(ε;A) = sup
b∈[0,1]n

min{t : ‖T(A)tb−T(A)∞b‖s(A) < ε},

where s(A) = di(A)
D(A)

.

We consider different potential starting belief vectors b because some heterogeneity of

beliefs is necessary for convergence not to be instant. Taking the supremum in this way is

standard in defining convergence times3 and can be viewed as a “worst case” measure.

2.2.4 The Speed of Convergence and Second Eigenvalues

As is well-known, the speed of convergence of a linear process like this is closely related to the

second eigenvalue of the updating matrix. The following lemma is the appropriate version of

this result in our setting, and after stating it, we focus only on the second eigenvalue, since

it can always be related back to consensus time using this result.

Lemma 1 (Golub and Jackson (2011), Lemma 2). Let A be connected, λ2(T(A)) be the

second largest eigenvalue in magnitude of T(A), and s := mini di(A)/D(A) be the minimum

relative degree. If λ2(T(A)) 6= 0, then for any 0 < ε ≤ 1:⌊
log(1/(2ε))− log(1/s1/2)

log(1/|λ2(T(A))|)

⌋
≤ CT(ε;A) ≤

⌈
log(1/ε)

log(1/|λ2(T(A))|)

⌉
.

If λ2(T) = 0, then CT(ε;A) = 1 for every 0 < ε < 1.

From now on, we will not focus on consensus times but rather on second eigenvalues.

Proposition 4 of Golub and Jackson (2011) shows that under mild restrictions on large-scale

network structure, the relationship between the two quantities is even tighter than the one

obtained in this lemma, and thus one can easily map results about eigenvalues into precise

ones about consensus times.

3For background on mixing times of Markov processes, see Montenegro and Tetali (2006).
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2.3 Degree-Weighted Homophily

2.3.1 Definition

The main focus of the paper is characterizing the speed of convergence, as introduced in

the last section, in terms of homophily. The particular measure of homophily that we use is

called degree-weighted homophily. In this section, we briefly recall the definition of degree-

weighted homophily from Golub and Jackson (2011); more detail can be found in Section 4

of that paper.

A preliminary notion is that of the weight between two groups.

Definition 2. Given T = T(A) and two subsets of nodes, B, C ⊆ N , let

WB,C =
1

|B||C|
∑

(i,j)∈B×C
Aij=1

d−1
i d−1

j .

The summation takes into account the edges of the network, weighting an edge in inverse

proportion to the product of degrees of the nodes it touches. This summation is divided by

the product of the sizes of the groups involved.

Definition 3. Given any ∅ ( M ( N , let the degree-weighted homophily of the network A

relative to M be defined by

DWH(M ;A) =
WM,M + WMc,Mc − 2WM,Mc

1
|M |2

∑
i∈M

1
di(A)

+ 1
|Mc|2

∑
i∈Mc

1
di(A)

, (1)

where the W ’s are computed relative to T(A).

It is clear that links within the group M or its complement M c increase the degree

weighted homophily and links between the two groups decrease it. The term in the denomi-

nator is a normalizing value which guarantees4 that this quantity is always between −1 and

1.

For any adjacency matrix A, let

DWH(A) = max
∅(M(N

|DWH(M ;A)|.

Thus, the degree weighted homophily of a given network is the maximum level of degree

homophily across all the different possible splits of the network.

4This can be verified by using the expression of DWH as a quadratic form in the proof of Lemma 3 in
Golub and Jackson (2011) and then noting that the spectral norm of the matrix T(A) is 1.
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2.3.2 A Remark on Computation

The fact that quantity DWH(A) is defined as a maximum over a potentially very large num-

ber of splits may raise questions about how practical it is to compute. Certainly, the “naive

algorithm” of iterating over all possible splits would be very demanding. However, efficient

ways to solve related problems have been developed in computer science (e.g. the Edmonds-

Karp algorithm for the maximum flow/minimum cut problem) and similar approaches may

be effective here. We have not explored this issue but believe it may be an interesting avenue

for further inquiry.

Perhaps more importantly, using the formula with any particular choice of M provides

a ready lower bound on DWH (and hence, as we show below, on the second eigenvalue and

consensus time). Since we will often have a good idea of where the fault lines in the network

lie based on knowledge about the types of agents in the network, there may be a shortcut

to finding a good M . See also the comments in the next remark; more formal results along

these lines can be found below in Section 3.

2.3.3 A Remark on Interpretation

As is clear from the definition, the DWH measure depends only on the network structure

and does not take into account any information about the types of agents inhabiting it. In

particular, consider the following thought experiment. Take a network having two types

(e.g. races) of agents, with each agent having many connections to same-type agents and

few connections to those of different types. This will be a typical segregated, homophilous

network: there is homophily in the sense that agents are predominantly linked to those of

the same type, and also segregation in the sense that there is a prominent “split” in the

graph between two groups – a split that can be seen even if the type information is invisible.

Now leave the network fixed and scramble the type labels randomly, so that each agent’s

neighborhood has roughly the same number of same-type and different-type agents. After

this, the network does not have homophily in the sense of people being predominantly linked

to those of the same type. But it will still have a high DWH, because there is the same

“split” in the network that there was before (since we did not change the graph structure

in the label-scrambling). Thus, DWH captures the signature of homophily in the network

structure; in principle, the underlying “types” of agents in the network could be anything.

Nevertheless, we call our measure degree-weighted homophily (as opposed to degree weighted

separation or something similar) because we believe that, in most economic or social settings,

the structural split captured by DWH will indeed track homophily based on some underlying

characteristic.
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2.3.4 Bounding Speed of Convergence using DWH

The following theorem, in combination with Lemma 1 above, shows that DWH provides a

lower bound on consensus time. We quote it because the main focus of the paper will be on

investigating the quality of this bound and on providing a matching upper bound.

Theorem 1 (Golub and Jackson (2011), Lemma 3). If A is connected, then

|λ2(T(A))| ≥ |DWH(A)|.

3 The Quality of the DWH Bound

It is natural to ask how good the bound in Theorem 1 is. This section discusses this question,

both heuristically and formally.

First, we show that the DWH bound is asymptotically tight by exhibiting a random

network model in which the bound is asymptotically the best possible. Next, we compare

the DWH bound with the famous Cheeger inequality and find that the DWH bound, in some

important cases, is significantly tighter. Third, we show that the relationship between DWH

and the consensus time uncovered in Theorem 1 can be strengthened with a complementary

upper bound.

For this analysis, we work with a random graph model which allows us to naturally

generate large graphs having a certain kind of structure. First we informally discuss a

special case, and then we state the formal model more generally in Section 3.4 below.

3.1 A Simple Tightness Result

The set, N , of nodes is partitioned into two nonempty subsets, N1 and N2. The matrix

A is formed as follows. Edges between nodes both in the same set Ni are created with

probability ps (s for “same”) and edges between subsets are created with probability pd (d

for “different”). All these zero/one edge random variables are independent of one another.

From this one can compute the expected overall link density:

p =

((|N1|
2

)
+

(|N2|
2

))
ps + |N1||N2|pd(

n
2

) .

When ps = pd = p, this is the Erdős-Rényi random graph with link probability p. Write

f1 = |N1|/n and f2 = 1 − f2. We will be considering asymptotics where n tends to infinity

and assuming that f1 and f2 tend to limits not equal to 0 or 1.
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We now show that when A is a random graph of this type and the minimum expected

degree grows at least as fast as log2 n, then |DWH(A)| approaches λ2 with high probability

as n grows large.

Proposition 2. Consider the random graph model discussed above. Then, as long as the

ratio np/ log2 n tends to ∞, it follows that

plimn→∞λ2(T(A)) = plimn→∞DWH(A).

3.2 Heuristic Illustrations

We now give some heuristic calculations and illustrations to convey some of the intuition of

the above tightness result.

Figure 1: Our heuristic bound compared to the second eigenvalues of homophilous two-
type random graphs with two equal-sized groups of 250 nodes each. The three sets of data
correspond to p = .045, p = 0.09, and p = 0.18. For each of these, ps was varied while p was
held fixed.

For the heuristic calculation, let us pretend that all vertices in N1 have the same degree,

namely the expected degree of such vertices, and similarly for N2. Moreover, we assume that
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the numbers of edges that enter the computation of DWH are all equal to their expectations.5

Example 1: Types of Equal Sizes First, consider the case where |N1| = |N2|, so that

f1 = f2 = 1/2. If we simplify (1) under these heuristic assumptions and use the fact that

that p is very close to the average of ps and pd, we find

|λ2| &
ps

p
− 1.

In Figure 1, we show the results of experiments in which we hold p fixed and vary ps

(correspondingly changing pd). The experimental second eigenvalues are compared with the

DWH bound.

Figure 2: Our heuristic bound compared to the second eigenvalues of a homophilous two-
type random graph with groups of 400 and 100 nodes. Here, ps was varied while p = 0.09
was held fixed.

Example 2: Types of Unequal Sizes A similar calculation can be done in the case

where group sizes are unequal. Suppose N1 makes up a fraction f1 of the population and N2

5These replacements of realizations by expectations are not as unrealistic as they may first seem; see
Lemma 4 of Golub and Jackson (2011).
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makes up a fraction f2 of the population. Then, letting δ1 = f1ps +f2pd and δ2 = f2ps +f1pd

be normalized versions of the degrees of the two types of vertices yields a heuristic bound of

|λ2| &
|ps/δ

2
1 + ps/δ

2
2 − 2pd/(δ1δ2)|

1/(f1δ1) + 1/(f2δ2)
.

In Figure 2 we plot the second eigenvalues and this heuristic bound for types of unequal

sizes.

3.3 Comparison with the Cheeger Inequality

A famous result whose techniques date back to Polya and Szego (1951), which is commonly

attributed in its continuous version to Cheeger (1970) and was developed in its discrete,

graph-theoretic version by Alon and Milman (1985) states that, if we define Vol(M) =∑
i∈M di then

|λ2| ≥ 1− min
∅⊆M⊆N

2
∑

i∈M
j /∈M

Aij

min{Vol(M), Vol(M c)}
.

Rewriting this as

|λ2| ≥ max
∅⊆M⊆N

min{Vol(M), Vol(M c)} − 2
∑

i∈M
j /∈M

Aij

min{Vol(M), Vol(M c)}
.

we see some resemblance to (1). However, it turns out that, at least in some cases, our

bound is much stronger.

Continuing in the homophilous random graph setting with M and M c equal to N1 and N2

from above, and continuing with the types of approximations used in the previous example,

we find:

Vol(M) ≈ n2f1(f1ps + f2pd)

and

Vol(M c) ≈ n2f2(f2ps + f1pd)

while

2
∑
i∈M
j /∈M

Aij ≈ 2n2f1f2pd.

Putting these together allows us to estimate the Cheeger bound in the homophilous Poisson

random graph. (We are assuming that the best cut for the Cheeger inequality will be the

one built into the random graph structure.) The result is plotted in Figure 3.
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Figure 3: Our DWH bound compared to the Cheeger inequality. Here, as in Figure 2,
p = .09 is held fixed as ps is varied. Only the regime ps/p ≥ 1 is plotted because the Cheeger
inequality is trivial for ps/p < 1.

3.4 Multi-Type Random Graphs and a Matching Upper Bound

on the Second Eigenvalue in Terms of DWH

We now work with a generalization of the random-graph model discussed above. A multi-

type random network is defined by the partition into types n = (N1, . . . , Nm) together with

a symmetric m-by-m matrix P, whose entries in [0, 1] describe the probabilities of links

between various types. The resulting random network is captured via its adjacency matrix,

which is denoted A(P,n) and is random. In particular, A(P,n) is built by letting the entries

Aij with i > j be independent Bernoulli random variables that take on a value of 1 with

probability Pk` if i ∈ Nk and j ∈ N`. That is, the entry Pk` is the probability that an agent

of type k links to an agent of type `. We fill in the remaining entries of A by symmetry:

Aij = Aji. We denote by n the total number of agents in the network,
∑

k |Nk|.
Now let us define group-level analogs of links and degrees. Set Bk`(P,n) = nkn`Pk`. This

is the expected number of links group k has to group `. Define dk(B) =
∑

` Bk`. This is the

expected number of links that group k has – a group-level analogue of degree.

One of the main results of Golub and Jackson (2011), Theorem 2, is that the second
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eigenvalue of T(A(P,n)) converges to that of T(B(P,n)), a much smaller matrix, as society

grows large, as long as the minimum expected degree dmin(B(P,n)) grows6 faster than log2 n.

In this section, we show that instead of computing the second eigenvalue of T(B(P,n)),

we can instead focus on the DWH of B(P,n), once again reducing an abstract eigenvalue

invariant into a concrete structural quantity. We already know from Lemma 1 that the

DWH of B furnishes a lower bound on its second eigenvalue. Here we show that, with some

adjustment factors, it also imposes an upper bound. For this result, we impose a natural

homophily condition whereby groups place most of their weight inside.

Before stating the proposition, a little bit of additional notation is required. Define

dmax(B(P,n)) to be the maximum entry of d(B(P,n)), and dmin(B(P,n)) to be the mini-

mum entry.

Theorem 2. Suppose that for every k

Bkk(P,n) ≥
∑
` 6=k

Bk`(P,n).

Then

λ2(T(B(P,n))) ≤ 2(m− 1) · dmax(B(P,n))

dmin(B(P,n))
·DWH(B(P,n)).

Remark 1. It is interesting to ask: does a close approximation of the same result hold, with

high probability, when λ2(T(B(P,n))) is replaced by λ2(T(A(P,n))) and DWH(B(P,n)) is

replaced by DWH(A(P,n))? We conjecture that the answer is yes. We already know from

Theorem 2 of Golub and Jackson (2011) that λ2(T(A(P,n))) gets arbitrarily close to the left-

hand side of the formula above under the expected-degree growth condition stated above. As

for the right-hand side, the key is to show that DWH(A(P,n)) converges to DWH(B(P,n)).

We believe this can be done by using concentration inequalities (see McDiarmid (1998)) to

replace realizations (of weights, degrees, etc.) in the formula defining DWH(A(P,n)) by the

expectations of those quantities, which can be computed from B(P,n). Nevertheless, the

problem is far from trivial, because one needs to control the DWH of many cuts all at once

in order to control their maximum.

4 Concluding Remarks

We have studied a measure of segregation in networks called degree-weighted homophily and

have shown that it can be used to control, fairly precisely, the time it takes for a certain well-

6To make such statements formal, we must consider a sequence P(q) and n(q), and consider q →∞. The
simplest way is to have P fixed and only the sizes of the groups changing with q. When there is no risk of
confusion, we suppress this indexing, but it is always in the background when we speak of asymptotics.
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studied information propagation process (the DeGroot process) to operate. For a class of

random graphs with two groups, this measure exactly characterizes the time to convergence.

The measure of segregation is intuitive and is based on the idea of counting links within

and between groups. Within-group links increase the DWH measure and between-group

links decrease it. How much each link matters depends on the degrees of the agents on its

ends: links between low-degree agents count for more than links between high-degree agents.

Our analysis makes two main points. First, homophily and the segregation it induces in

networks has important consequences for processes of interest, particularly ones of informa-

tion flow. Homophily slows down information aggregation via repeated local averaging, and

DWH captures a great deal about how it does so. Second, thinking about the substantive

consequences of homophily or segregation can provide quite sharp guidance on how to mea-

sure it, and can motivate new measures of important network phenomena. This idea extends

to other settings: while the precise measures relevant in any context are likely to be differ-

ent, we suggest that modeling the substantive consequences of a network phenomenon in a

particular setting can be quite useful in determining how best to quantify the phenomenon

itself.
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5 Appendix: Proofs

Proof of Proposition 2: First,we show

plimn→∞λ2(T(A)) = plimn→∞DWH(N1;A).

16



We use the notation of Golub and Jackson (2011), which is introduced in Section 3.4 of

this paper. For the left hand side, apply Theorem 2 of Golub and Jackson (2011) and then

compute the second eigenvalue of

F(P,n) =

[
f1ps

f1ps+f2pd

f2pd

f1ps+f2pd
f1pd

f1pd+f2ps

f2ps

f1pd+f2ps

]
,

(the result appears in Jackson (2008), Section 8.3.6). For the right hand side, first use the

definition of DWH; then apply Lemma 4 of Golub and Jackson (2011) to show the degrees

in the denominators in the DWH formula are arbitrarily close to their expectations7 with

probability tending to 1 as n grows; then use the strong law of large numbers to conclude

that the ratios appearing in the formula converge to their expectations.

We know from the definition of DWH and from Theorem 1 that

DWH(N1;A) ≤ DWH(A) ≤ λ2(T(A)).

The above argument shows that the leftmost and rightmost quantities tend to the same value

as n →∞, from which we conclude that DWH also tends to this value.

Proof of Theorem 2: Throughout, we hold P and n fixed and drop the corresponding

arguments. We will write simply di for di(B) and drop the arguments on dmax and dmin as

well. Finally, λk in this proof will mean λk(T(B)).

Let v be a right eigenvector of T(B) corresponding to the second-largest eigenvalue in

magnitude, and assume v is normalized so that ‖v‖d = 1. Define w by

wi =

 1
rdi

if vi ≥ 0

− 1
(m−r)di

otherwise.

where r is the number of nonnegative entries of v.

Now, the key observation is that we can write

w = a2v +
m∑

k=3

akzk,

where zk is the eigenvector of T(B) corresponding to λk and a2 = 〈v,w〉d. We are just

computing the projection of w on the subspace spanned by v. Further, we may assume the

eigenvectors are chosen so that each ak ≥ 0. Since T(B) satisfies the diagonal-dominance

assumption in the proposition, all its eigenvalues (which are real because the matrix is

7In the sense that the ratio of the realized degree to the expectation can be guaranteed to be within δ of
1 for all nodes simultaneously with a probability at least 1− δ for sufficiently large n.
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symmetric) are nonnegative by the Geršgorin circle theorem (Varga, 2004, Theorem 1.1).

Thus,

〈w,T(B)w〉d ≥ aλ2. (2)

In the proof of Lemma 3 of Golub and Jackson (2011), we saw that

DWH(B) =
〈w,T(B)w〉d
〈w,w〉d

.

Next, observe that

〈w,w〉d =
∑
vi≥0

di

d2
i r

2
+

∑
vi<0

di

d2
i (m− r)2

≤ d−1
min

[
1

r
+

1

m− r

]
≤ 2d−1

min.

So DWH(B) ≥ a2 · dmin · λ2/2.

It only remains to compute a2.

a2 = 〈v,w〉d

=
∑

i:vi≥0

|vi|
r

+
∑

i:vi<0

|vi|
(m− r)

≥
∑

i

|vi|
m− 1

r ≤ m− 1 and m− r ≤ m− 1

=
1

m− 1

∑
i

|vi|2 all the vi ≤ 1

≥ 1

dmax(m− 1)
normalization of v.

Putting everything together, we conclude that DWH(B) ≥ λ2

2(m−1)
· dmin

dmax
.
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