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Abstract. We model the production of complex goods in a large supply network. Each firm

sources several essential inputs through relationships with other firms. Individual supply relation-

ships are at risk of idiosyncratic failure, which threatens to disrupt production. To protect against

this, firms multisource inputs and strategically invest to make relationships stronger, trading off the

cost of investment against the benefits of increased robustness. A supply network is called fragile

if aggregate output is very sensitive to small aggregate shocks. We show that supply networks of

intermediate productivity are fragile in equilibrium, even though this is always inefficient. The

endogenous configuration of supply networks provides a new channel for the powerful amplification

of shocks.
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1. Introduction

Complex supply networks are a central feature of the modern economy. Consider, for instance,

a product such as an airplane. It consists of multiple parts, each of which is essential for its

production, and many of which are sourced from suppliers. The parts themselves are produced

using multiple inputs, and so on.1 Due to the resulting interdependencies, an idiosyncratic shock

can cause cascading failures and disrupt many firms. We develop a theory in which firms insure

against supply disruptions by strategically forming supply networks, trading off private gains in

the robustness of their production against the cost of maintaining strong supply relationships. Our

main results examine how equilibrium supply networks respond to idiosyncratic and aggregate risk.

We find that, in equilibrium, (i) the economy is robust to idiosyncratic shocks, yet (ii) small shocks

that systemically affect the functioning of supply relationships are massively amplified. Moreover,

(iii) the functioning of many unrelated supply chains is highly correlated, and (iv) the complexity

of production is key to the nature of these effects and the level of aggregate volatility.

Underlying these results is a discontinuous phase transition in the structure of production net-

works that arises due to production being complex—reliant on multiple inputs at many stages.

Thus, a theoretical contribution of our work is the study of novel equilibrium fragilities in the

strategic formation of large networks, and new methods for analyzing them.

Our analysis is built on a model of interfirm sourcing relationships and their disruption by

shocks. We now motivate our study of these phenomena with some examples. Firms often rely on

particular suppliers to deliver customized inputs. For instance, Rolls-Royce designed and developed

its Trent 900 engine for the Airbus A380; Airbus could not just buy the engine it requires off-the-

shelf. Such inputs are tailored to meet the customer’s specifications, and there are often only a

few potential suppliers that a given firm contracts with. Thus, a particular airplane producer is

exposed not just to shocks in the overall availability of each needed input, but also to idiosyncratic

shocks in the operation of the few particular supply relationships it has formed. Examples of

such idiosyncratic shocks include a delay in shipment, a fire at a factory, a misunderstanding by a

supplier that delivers an unsuitable component, or a strike by workers. As we have noted, many

of a given firm’s suppliers themselves will be in a similar position, relying on customized inputs,

and so idiosyncratic disruptions to individual relationships and production processes somewhere in

a network can have far-reaching effects, causing damage that cascades through the supply chain

and affects many downstream firms.2 On the other hand, many firms multisource key inputs to

reduce their dependency on any one supplier and so idiosyncratic disruptions may not cause much

reduction in output at all.

Even the basic properties of such complex supply networks are not well-understood. To articu-

late this, we describe a simple model capturing key aspects of the above examples. There are many

products (e.g., airplanes, engines, etc.). Each has many differentiated varieties, produced by small,

1For example, an Airbus A380 has millions of parts produced by more than a thousand companies (Slutsken, 2018).
In addition to the physical components involved, many steps of production require specific contracts and relationships
with logistics firms, business services, etc. to function properly.
2Kremer (1993) is a seminal study of some theoretical aspects of such propagation. Carvalho et al. (2020) empirically
study how shocks caused by the Great East Japan Earthquake of 2011 propagated through supply networks to
locations far from the initial disruption. In Section 6, we discuss further evidence that such disruptions are practically
important, and can be very damaging to particular firms.



2 MATTHEW ELLIOTT, BENJAMIN GOLUB, AND MATTHEW V. LEDUC

specialized firms. A given product has a set of customized inputs that must be sourced via sup-

ply relationships and are essential to its production—e.g., an airplane requires engines, navigation

systems, etc. To source these specific, compatible, varieties firms may have several substitutable

sourcing options (i.e., they multisource). Each of a firm’s potential supply relationships may oper-

ate successfully or not: e.g., one engine manufacturer’s delivery may be delayed by a strike, while

another is able to deliver normally. In order for a firm to be functional, it must have at least one

operating supply relationship to a firm producing each of its essential inputs. To be functional,

these producers must in turn satisfy the same condition, and so on—until a point in the supply

chain where no customized inputs are required. Our modelling of which supply relationships work

is simple: independently, each relationship operates successfully with a probability called the re-

lationship strength.3 This probability represents the chance of avoiding logistical disruptions and

failures of contracts in any specific relationship. Given a realization of operating relationships, the

firms that are able to produce purchase their required inputs and then sell their products to other

firms as well as to consumers. Social welfare is increasing in the number of firms able to produce.

Firms make profits from production.

Let us, to begin with, take relationship strength to be exogenous and symmetric across the supply

network, and examine aggregate output as we vary this parameter. The key parameters other than

relationship strength for describing the mechanics of a supply network are (i) the number of distinct

inputs required in each production process; (ii) the number of potential suppliers of each input;

and (iii) the depth of supply chains, i.e., the number of steps of specialized sourcing. The first and

third dimensions capture the complexity of production, while the second captures the availability

of multisourcing. In our model there is a continuum of firms and the fraction of firms functioning

is deterministic.4 This fraction is our main outcome of interest, and we call it the reliability of

the supply network. Our first main result concerns a distinctive form of sensitivity that can arise

in such networks—what we call a precipice. Suppose production is complex—that is, that most

firms have multiple essential inputs they need to source, and supply networks are deep, meaning

that many steps of such production are needed. We find that there is a discontinuity in reliability

as we vary relationship strength, holding all else fixed. When relationship strength falls below a

certain threshold (defining the precipice), production drops discontinuously. Thus, if relationship

strengths happen to be close to the precipice, a small, systemic, negative shock to relationship

strengths is amplified arbitrarily strongly, leading to severe economic damage. We also show that a

social planner choosing a level of investments in relationship strengths to maximize welfare would

never choose a level such that the supply network is on a precipice.

We give a few practical examples of systemic shocks to relationship strengths. Suppose, first, that

the institutions that help uphold contracts and facilitate business transactions suddenly decline in

quality, for example due to a political shock. Each supply relationship then becomes more prone

to the idiosyncratic disruptions discussed above.5 Even if the damage to any single relationship

3Though the modeling of basic shocks is independent, the interdependence between firms and their suppliers makes
failures correlated between firms that (directly or indirectly) transact with each other.
4This is by a standard diversification argument. There are enough firms and supply chains operating that none of
them is systemically important. On the complementary issue of when individual firms can be systemically important,
see Gabaix (2011) and the large ensuing literature.
5Blanchard and Kremer (1997) present evidence that the former Soviet Union suffered a large shock of this kind when
it transitioned to a market-based economy.
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is small (e.g., because usually contracts function without enforcement being relevant), our results

show that such a shock can cause widespread disruptions throughout the supply network. For a

second concrete interpretation of the kinds of aggregate shocks we have in mind, consider a small

shock to the availability of credit for businesses in the supply network. The shock matters for

firms that are on the margin between getting and not getting credit that is essential for them to

deliver on a commitment. The effect of such a credit shock can be modeled as any given supply

relationship being slightly less likely to function (depending on ex ante uncertain realizations of

whether a firm is on the relevant margin). Third, during the Covid-19 crisis, there has been much

uncertainty about how different supply relationships might be affected, and this can be modeled as

a systemic decrease in the probability that suppliers are able to deliver the inputs required from

them.

The first result just discussed on exogenous relationship strengths shows that, starting at certain

strength levels, supply network functioning can be very sensitive to slight shocks to strengths.

However, relationship strengths are strategic choices, and the endogenous determination of these

is in fact our main focus. Our question is whether a supply network will be near a precipice

when relationship strengths are determined by equilibrium choices rather than exogenously or by

a planner. Since production is risky, an optimizing firm will strategically choose its relationship

strength to manage the risk of its production being disrupted. By investing more, a firm can

increase the probability that one of its potential suppliers for each of its essential inputs is able to

supply it, hence allowing the firm to produce its output and make profits. Maintaining multiple

relationships that facilitate production and provide backup in case of disruption is costly. Firms

trade off these costs against the benefits of increased robustness.6 In our model, firms choose a level

of costly investment toward making their supply relationships stronger—i.e., likelier to operate.7

Our main findings give conditions for equilibrium relationship strength levels to put the supply

network on the precipice, and show that the precipice is not a knife-edge outcome. Indeed, we

characterize a positive-measure set of parameters (governing the profits of production and the costs

of forming relationships) for which the equilibrium supply network is on the precipice. The fragility

that a supply network experiences in this regime is highly inefficient: a social planner would never

put a supply network on the precipice for the same parameters. As supply networks become large

and decentralized one might think that the impact of uncertainty on the probability of successful

production would be smoothed by firms’ endogenous investments to protect against shocks, and by

averaging outcomes across a continuum population. We find the opposite: in equilibrium, there is a

very sharp sensitivity of aggregate productivity to relationship strength. This is in contrast to many

standard production network models, where the aggregate production function is not too sensitive

to small shocks at any outcome. The novelty of our framework comes from the combination of

two features of production functions that are essential for our results. The first is complexity: The

supply networks we study are many layers deep and firms must source multiple essential inputs

6Strategic responses to risk in networks is a topic that has attracted considerable attention recently. See, for instance,
Bimpikis, Candogan, and Ehsani (2019a), Blume, Easley, Kleinberg, Kleinberg, and Tardos (2011), Talamàs and
Vohra (2020), and Erol and Vohra (2018), Amelkin and Vohra (2019), and Acemoglu and Tahbaz-Salehi (2020). On
the practical importance of the strength of contracts in supply relationships, see, among others, Antràs (2005) and
Acemoglu, Antràs, and Helpman (2007).
7This can be interpreted in two ways: (1) investment on the intensive margin, e.g. to anticipate and counteract risks
or improve contracts; (2) on the extensive margin, to find more partners out of a set of potential ones.
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that cannot be purchased off-the-shelf. The second is the presence of idiosyncratic disruptions to

supply. Jointly, these phenomena create the possibility of precipices, which underlie our analysis.

More specifically, our main results concern whether the supply network is on a precipice as we

vary an aggregate productivity parameter.8 Depending on the value of this parameter, the supply

network in equilibrium can end up in one of three configurations: (i) a noncritical equilibrium

where the equilibrium investment is enough to keep relationship strength away from the precipice;

(ii) a critical equilibrium where equilibrium relationship strength is on the precipice; and (iii) an

unproductive equilibrium where positive investment cannot be sustained. These regimes are ordered.

As the productivity of the supply network decreases from a high to a low level, the regimes occur

in the order just given. Each regime occurs for a positive interval of values of the parameter.

Equivalently, for an economy consisting of many disjoint supply networks distributed with full

support over the parameter space, a positive measure of them will be in the fragile regime, and

these will collapse if relationship quality is shocked throughout the economy.

Our analysis makes a conceptual, modeling, and technical contribution to the theory of economic

networks. First, we introduce percolation analysis (i.e., disabling some links at random) to an oth-

erwise standard network model of complex production—with complex meaning that each firm must

source multiple inputs through customized relationships.9 That combination leads to the finding

that under natural assumptions, random failures in a production network result in a discontinuous

phase transition, where aggregate functionality abruptly disappears when relationship strengths

cross a critical threshold. Simple production, which does not require risky sourcing of multiple

inputs, is not susceptible to this fragility. Second, as a modeling contribution, we demonstrate the

tractability of studying equilibrium investments in links (more precisely, investments in the proba-

bility that links are operational) in such a setting. By defining a suitable model with a continuous

investment choice and a continuum of nodes, investment problems are characterized by relatively

tractable first-order conditions, because firms are able to average over the randomness in network

realizations. We expect the modeling devices we develop to have other applications. Finally, using

our equilibrium conditions to deduce the ordering of regimes discussed above requires developing

some new techniques for the analysis of large network formation games.10 For example, a crucial

step in our main results depends on showing that firms’ investments in network formation are lo-

cally strategic substitutes at the equilibrium investment levels, which depends on subtle properties

of equilibrium network structure and incentives that we characterize.

We explore some extensions and implications of our modeling. First, we examine robustness on

a number of dimensions. We discuss why the basic insights about fragility extend to alternative

specifications of shocks and investment in relationships. Perhaps our most important robustness

check concerns relaxing certain symmetries of the supply network that we use to simplify our main

analysis. We study how fragility manifests with firm heterogeneity. In particular, we show that

precipices continue to obtain in presence of rich heterogeneity across multiple dimensions (number

of inputs required, multisourcing possibilities, directed multisourcing efforts, profitability, etc.).

One important additional implication of our heterogeneity analysis is that a supply network is only

8This parameter can be interpreted as a measure of productivity relative to the costs of maintaining relationships.
9A recent model motivated by some of the same questions is Acemoglu and Tahbaz-Salehi (2020), where each node
in a production network relies on one failure-prone custom supplier. In Section 7, we discuss related models on
information sharing, financial contagion, and other settings.
10This differs from and complements the use of graphons in Erol, Parise, and Teytelboym (2020).
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as strong as its weakest links: as one product enters the fragile regime, all products that depend

on it directly or indirectly are simultaneously pushed into the fragile regime. Second, we interpret

our main results in terms of the short- and medium-run resilience of a supply network to shocks,

and consider whether the fragility we identify can be ameliorated by natural policy interventions.

Third, we show how the supply networks we have studied can be embedded in a larger economy

with intersectoral linkages that do not rely on specific sourcing. Our model yields a new channel for

the propagation of shocks across sectors, and their stark amplification. Fourth, while the focus of

our analysis is on linking complex supply networks to aggregate volatility, we also discuss how the

model can provide a perspective on some stylized facts concerning industrial development (Section

8.4). After presenting our results, in Sections 6 and 7 we discuss in detail how they fit into the

most closely related literatures.

2. Model: The supply network

Our main object of study is a network whose nodes are a continuum of small firms producing

differentiated products. These are connected to their suppliers by a network of potential supply

relationships, a random subset of which are realized as operational for sourcing.

An outcome of central interest is the set of firms that is functional—i.e., capable of producing.

The measure of functional firms will be the key quantity of interest in our model, determining

welfare and incentives to invest to form the network, which we introduce in Section 4. The purpose

of this section is to set up the basic structure of the production network and define the set of

functional firms.

2.1. Nodes: Varieties of products. There is a finite set I of products. For each product i ∈ I,

there is a continuum Vi of varieties of i, with a typical variety v being an ordered pair v = (i, f),

where f ∈ Fi ⊆ R is a variety index; we take Fi = [0, 1/|I|] for all i, so that the total mass of firms

(and of varieties) in the supply network is 1. Let V =
⋃
i∈I Vi be the union of all the varieties.

These are the nodes in our supply network. Each is associated with a small firm producing the

corresponding variety.

2.2. Links: Potential and realized supply relationships. First, for each product i ∈ I there

is a set of required inputs I(i) ⊆ I. Second, each variety v ∈ V is associated with a supply chain

depth d(v) ∈ Z+ that specifies how many steps of customized, specifically sourced production are

required to produce v, with varieties of larger depth requiring more steps. Different varieties of the

same product can have different depths. The measure of varieties with any depth d ≥ 0 is denoted

by µ(d).

Consider any variety v ∈ Vi. For each j ∈ I(i) (i.e., each required input) the variety v has a set

of potential suppliers, PSj(v) ⊆ Vj and a random subset of realized suppliers Sj(v) ⊆ PSj(v).

First consider the varieties v ∈ V such that d(v) = 0. Specialized sourcing of inputs is not

required for these varieties, and they operate without disruption. Thus, in this case, we take

Sj(v) = Vj for each j ∈ I(i).

Next, consider any variety v ∈ Vi that has depth d(v) > 0. For each j ∈ I(i), the set PSj(v) is a

finite set of distinct varieties v′ ∈ Vj with each such v′ having depth d(v′) = d(v)−1. The identities

of these suppliers are independent draws from the set of varieties v′ such that d(v′) = d(v)− 1 (i.e.,
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the set of varieties of compatible depth).11 Specialized sourcing requirements represent the need

for a customized input, the procurement of which is facilitated by relational contracts.

a1

b1 b2 c2c1

d1 d2 c3 c4 d3 d4 c5 c6 a5a4e4e3a3a2e2e1

Figure 1. Here we consider a potential supply network for variety (a, 1) with underlying products
I = {a, b, c, d, e}; the relevant input requirements are apparent from the illustration. Each variety
requires two distinct inputs. When these inputs must be specifically sourced, there is an edge from
the sourcing variety to its potential supplier. We abbreviate (a, 1) as a1 (and similarly for other
varieties). Here variety a1 has depth d(a1) = 2. Varieties higher up are upstream of a1, and their
depths are smaller. Orders or sourcing attempts go in the direction of the arrows, and products are
delivered in the opposite direction, downstream.

Each sourcing relationship between v and a variety v′ ∈ PSj(v) is operational or not—a binary

random outcome. For every v ∈ V, there is a parameter xv, called relationship strength (for now

exogenous) which is the probability that any relationship v has with its suppliers is operational.

All realizations of relationship operation are independent. The set of actual suppliers Sj(v) is then

obtained by including each potential supplier in PSj(v) independently with probability xv. Whereas

the potential supply relationships define compatibilities, the realized supply network identifies which

links are actually available for sourcing. The stochastic nature of availability arises, e.g., from

uncertainty in delivery of orders, miscommunications about specifications, etc.12

We define two random networks on the set V of nodes. In the potential supply network G, each v

has links directed to all its potential suppliers v′ ∈ ⋃j∈I(i) PSj(v). (See Figure 1 for an illustration.)

In the realized supply network G′, each v has only the operational subset of links, to the realized

suppliers: v′ ∈ ⋃j∈I(i) Sj(v). See the links in Figure 2 for an illustration of the subset of supply

relationships that are operational.

2.3. The set of functional varieties. For a given realization of the supply network, we will

inductively define which varieties are functional, which means that sourcing disruptions do not

prevent them from producing.

Depth-0 varieties are defined to always be functional: sourcing failures can never prevent the

production of such varieties simply because their sourcing is unconstrained by definition. Given

functionalities of varieties of depth d − 1, a variety v of depth d is functional if and only if its set

of realized suppliers Sj(v) contains at least one functional supplier for each input j that v requires.

Figure 2 provides an illustration of the potential supply network shown in Figure 1 and a particular

realization of operational supply links.

11For a formal construction of the potential and realized supply networks, see Appendix A.
12In a bit more detail, xv can capture uncertainty regarding compatibility, whether delivery can happen on time,
possible misunderstanding about the required input, access to credit that may be needed to deal with unexpected
costs, etc. It will depend on the context or environment in which production occurs, and also (as we explicitly model
below) on the investments the firm producing v makes. See Section 6 for more details.
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a1

b1 b2 c2c1b1

d1 d2 c3 c4 d3 d4 c5 c6 a5a4e4e3a3a2e2e1

(A) Step 1: Assigning functionalities for depth-1 varieties.

b1 c2b2 c2

a1

c1b1

d1 d2 c3 c4 d3 d4 c5 c6 a5a4e4e3a3a2e2e1

(B) Step 2: Assigning functionalities of depth-2 varieties.

Figure 2. An illustration for determining the set of functional varieties given a realized supply
network. Functional varieties are represented by green circles, while non-functional ones are pink
squares. Varieties that have not yet been assigned to be functional or not are white circles. Varieties
of depth 0 are always functional. Panel (A) assigns functionalities to varieties of depth 1. Panel
(B) assigns functionalities to varieties of depth 2, making a1 nonfunctional.

We let V ′ denote the (random) set of functional varieties, and V ′i denote the set of functional

varieties in product i.

3. Reliability with exogenous relationship strengths

We present our main findings in regular supply networks. These are defined by two main sym-

metries. First, the number of essential inputs is |I(i)| = m for each product i. Second, each variety

of depth d > 0 has n potential suppliers for each input—i.e. |PSj(v)| = n whenever j is one of the

required inputs for variety v. Networks with these homogeneous structures are depicted in Figures

1 and 2. In this section, we posit that relationship strengths are given by xv = x, the same number

for each v, and this x is exogenous.13

It will be important to characterize how the measure of functional firms V ′ varies with relationship

strength x. Denote by ρ̃(x, d) the probability that an arbitrary variety of depth d is functional when

relationship strength is x. Zero-depth varieties are functional by our assumption that they do not

need any specialized inputs: ρ̃(x, 0) = 1. By symmetry of the supply tree, the probability ρ̃(x, d)

does indeed only depend on x and d (and we calculate it explicitly below in Section 3.1.1). The

probability that a variety selected uniformly at random is functional is called the reliability of the

supply network. Since it depends on the distribution of depths µ, we denote this by ρ(x, µ) and

define it as

ρ(x, µ) =
∞∑

d=0

µ(d)ρ̃(x, d). (1)

13We endogenize relationship strengths in the next section, and we relax the symmetry assumptions in Section 6.3.2.
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Figure 3. Panel (A) shows how reliability varies with relationship strength x for a particular τ .
Panel (B) depicts a correspondence that is the limit of the graphs ρ(x, µτ ) as τ tends to infinity.

Deep supply networks: Taking limits. A focus throughout will be the case where a typical variety

has large depth.14 We thus introduce a notation for asymptotics: we fix a sequence (µτ )∞τ=1 of

distributions, τ is a parameter we will take to be large. We assume µτ places probability at least

1 − 1
τ on [cτ,∞) for some c > 0.15 For instance, we can take µτ to be the geometric distribution

with mean τ (in which case τ has an exact interpretation as average depth). For large τ , if inputs

are single-sourced (n = 1) and links fail with positive probability, there will only be a very remote

probability of successful production. We therefore restrict attention to the case of multisourcing

(n ≥ 2).

3.1. A discontinuity in reliability. A key implication of the model is the shape of the aggregate

reliability function as we vary x. As we will see in the next section, this function is closely linked

to the aggregate production function of the supply network, and thus its shape underlies many of

our results. Our first result characterizes important properties of this shape.

Proposition 1. Fix any n ≥ 2 and m ≥ 2. Then there exist positive numbers xcrit, rcrit > 0 such

that,

(i) if x < xcrit, we have that ρ(x, µτ )→ 0 as τ →∞. That is, reliability converges to 0.

(ii) if x > xcrit, then, for all large enough τ , we have ρ(x, µτ ) > rcrit. That is, reliability remains

bounded away from 0.

In Figure 3(a) we plot the reliability function ρ(x, µτ ) for a fixed finite value of τ against the

probability x of each relationship being operational. One can see a sharp transition in relationship

strength x. This can be seen more sharply in Figure 3(b), where we plot the limit of the graph shown

in (a) as τ →∞. We use the m = n = 2 case here as in our illustrations above. There is a critical

value of relationship strength, which we call xcrit, such that the probability of successful production

is 0 when x < xcrit, but then increases sharply to more than 70% for all x > xcrit. Moreover, the

14Supplementary Appendix SA4 investigates how reliability varies with investment in production trees with bounded
depth.
15Note that this means varieties of low depth have many incoming edges in the potential supply network, since there
are relatively few of them, but they make up a relatively large number of the nodes in a typical production tree.
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Figure 4. Panel (A) shows the probability, Rx(r), that a focal firm is functional as a function of
r, the probability that a random supplier is functional. Here we use the parameters n = 4, m = 2
and x ∈ {0.5, 0.55, 0.6, 0.65}. The intersections with the 45 degree line marked by the red circles
represent reliability values (for deep supply trees) associated with the given exogenous parameters.
Panel (B) shows, for a given value of x (namely, x = 0.55), the first four values of ρ̃(x, d) given by
equation (2). Note that the intersection is approached quite closely after a few steps.

derivative of the limit reliability graph as we approach xcrit from above grows arbitrarily large (i.e.,

limx↓xcrit limτ→∞ ρ′(x, µτ ) = ∞). This has important ramifications, as we will see. An immediate

one is that small improvements in relationship strength x, for example through the improvement

of institutions, can have large payoffs for an economy, and the net marginal returns on investment

in x can change sharply from being negative to being positive and very large.

3.1.1. The reasons for the shape of the reliability function. To explain the logic behind the propo-

sition, let us now calculate the probability that a given variety v with depth d is functional.

Recall that we denote by ρ̃(x, d) the probability that a variety of depth d is functional when re-

lationship strength is x. We will argue that this can be expressed recursively as follows. First,

ρ̃(x, 0) = 1, since varieties of depth 0 are sure to be functional. Then, for a suitably defined

function Rx : [0, 1] → [0, 1], we can write the depth-d reliability in terms of the depth-(d − 1)

reliability:

ρ̃(x, d) = Rx(ρ̃(x; d− 1)). (2)

Indeed, more explicitly, the function that makes this true is16

Rx(r) = (1− (1− xr)n)m.

As we look at networks with large typical depths, it is the ρ̃(x, d) for large d that will matter.

Proposition 6 in Appendix B.1 shows that there is a unique correspondence ρ(x) that is the limit

of the graphs of ρ(x, µτ ) in a suitable sense as τ → ∞. By analyzing this correspondence we can

show that a sharp transition like that shown in Figure 3(B) occurs for any complexity m ≥ 2 and

any multisourcing level n ≥ 2, once depths become large.

The intuition for the sharp transition is illustrated in Figure 4. In panel (A), we plot the

probability that a given firm is functional against the probability that its suppliers are functional

16Fix a variety and consider any one of its inputs. For a given supplier of that input, by definition its reliability is
the argument r, and the probability that the link to the supplier is operational is x. The probability that both events
happen is xr. The probability that this combination of events happens for at least one of the n potential suppliers of
the first input is therefore 1− (1− xr)n. Finally, the probability that for all m inputs, such a “good event” happens
is (1− (1− xr)n)m.
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(which is taken to be common across the suppliers, and denoted by r). The curve Rx(r) is shown

for several values of x. In panel (B), one of these Rx(r) curves is sketched (note the change in axes)

along with the 45-degree line; the figure shows that if we repeatedly apply formula (2) starting

with ρ̃(x, 0) = 1, we get a a sequence of ρ̃(x, d) converging to the largest fixed point of Rx(r). As

supply networks become deep, a firm and its suppliers occupy essentially equivalent positions, so

it is natural that the limit probability of being functional for large-depth firms is equal to such a

fixed point. The reliability levels r that are fixed points of the function Rx(r) in equation (2) are

given by its intersections with the 45-degree line, illustrated in panel (A) for several values of x

(each corresponding to one of the curves). We will now examine how the largest such intersection

depends on x. For high enough x, the function Rx(r) has a fixed point with r > 0. When x is below

a certain critical value xcrit, the graph of Rx has no nonzero intersection with the 45-degree line and

so the limit of ρ̃(x, d) as d→∞ is 0. Crucially, the largest fixed point of Rx(r) does not decrease

continuously down to 0 as we lower x. Instead, it drops down discontinuously when x decreases

past xcrit—defined as the (positive) value of x where there is a point of tangency between Rx(r) and

the 45-degree line. At this point, the largest r solving r = Rx(r) jumps down discontinuously from

the r corresponding to this point of tangency to 0. This is the discontinuous “precipice” drop. As

we explain in Section 6.1.1 where we contrast complex production (m > 1) with simple production

(m = 1), the convex-then-concave shape of the Rx curve is essential for creating a precipice.

3.1.2. Comparative statics of the reliability function. Some straightforward comparative statics can

be deduced from what we have said. If n (multisourcing) increases while all other parameters are

held fixed, then one can check that Rx (as illustrated in Figure 4(A)) increases pointwise on (0, 1),

and this implies that all the ρ̃(x, d) increase. It follows that the ρ curve moves upward, and the

discontinuity occurs at a lower value of x.

Similarly, when m (complexity) increases, the Rx curve decreases pointwise, implying that all

the ρ̃(x, d) decrease. It follows that the ρ curve moves downward, and the discontinuity occurs at

a higher value of x.

4. Supply networks with endogenous relationship strength

In this section, we study the endogenous determination of relationship strength. We first study

a planner’s problem—choosing an optimal value of strength for all relationships. We then turn to

a decentralized problem in which firms invest in their own relationship strengths. Throughout, we

focus on symmetric outcomes.

Our main results show that while investments that put the supply network on the precipice are

very inefficient, they need not be knife-edge or even unlikely outcomes in equilibrium.

To connect the graph-theoretic notion of reliability in the previous section with economic out-

comes, we introduce a relationship between reliability and output. In particular, we posit that

there is a function Y such that Y (V ′) is the (expected) aggregate gross output associated with a

given set V ′ of functional firms. We assume that it satisfies the following assumption:

Property A. In a regular supply network, Y (V ′) = h(ρ(x, µ)), where h : [0, 1] → R is a strictly

increasing, concave function with bounded and continuous derivative. Moreover, h(0) = 0.
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In Appendix C, we provide a microfoundation for this assumption: we define a standard produc-

tion network model on top of the supply network, being explicit about production functions and

markets at the micro level. There, we show that aggregate output satisfies Property A. However,

our main results—about efficient and equilibrium networks—do not rely on any details of the mi-

crofoundations. Instead, they rely only on assumptions about benefits and costs of production that

we bring out into named properties.

Property A sets the stage for our study of the planner’s problem.

4.1. A planner’s problem. We study a planner who chooses a global x that determines the

values of all relationship strengths, xv = x. This can be interpreted as investing in the quality of

institutions, at a cost that we will introduce below. As stipulated in Property A, the gross output

of the supply network is an increasing function of reliability, Y (V ′) = h(ρ(x, µ)), where reliability ρ

depends on the symmetric level of relationship strengths x and depth distribution µ. The planner’s

cost of a given choice of x enters through subtracting a quantity 1
κcP (x) of output, where κ is a

strictly positive parameter and cP : [0, 1] → R is a fixed function. Higher values of κ have the

interpretation that they shift down the costs of obtaining a given level of relationship strengths,

and hence a given level of gross output. The planner seeks to maximize expected net aggregate

output by choosing relationship strengths x, and hence solves the planner’s problem

max
x∈[0,1]

h(ρ(x, µ))− 1

κ
cP (x). (3)

We make the following assumption concerning cP (x):

Property B. The function cP : [0, 1] → R is continuously differentiable and weakly convex, with

cP (0) = 0, cP (xcrit) > 0, c′P (0) = 0, and limx→1 c
′
P (x) =∞.

Substantively, the conditions in this property entail that there are increasing marginal social costs

of relationship strength and achieving the critical level of reliability requires a positive investment.

The Inada conditions on derivatives ensure good behavior of optima.

Define the correspondence

xSP (κ, µ) := argmax
x∈[0,1]

h(ρ(x, µ))− 1

κ
cP (x).

This gives the values of x that solve the social planner’s problem for a given κ and distribution of

supply chain depths µ. As elsewhere, we consider a sequence (µτ )∞τ=1 of depth distributions, where

µτ places mass at least 1− 1
τ on [τ,∞).

Proposition 2. Fix any n ≥ 2 and m ≥ 2. Then there exists a number κcrit > 0 such that, for

some ε > 0, the following statements hold for all large enough τ :

(i) for all κ < κcrit, all values of xSP (κ, µτ ) are at most xcrit − ε, have cost less than ε, and

yield reliability less than ε;

(ii) for all κ > κcrit, all values of xSP (κ, µτ ) are at least xcrit + ε and yield reliability at least

rcrit + ε;

(iii) for κ = κcrit, all values of xSP (κ, µτ ) are outside the interval [xcrit−ε, xcrit+ε] and reliability

is outside the interval [ε, rcrit + ε].
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The first part of Proposition 2 says that when κ is sufficiently low, it is too costly for the social

planner to invest anything in the quality of institutions, and hence reliability is very low. As κ

crosses a threshold κcrit, it first becomes optimal to invest in institutional quality. At this threshold,

the social planner’s investment increases discontinuously. Moreover, it immediately increases to a

level strictly above xcrit; and for all larger κ all solutions stay above xcrit.

It is worth emphasizing that the planner never chooses to invest near the critical level xcrit. The

reason is as follows: sufficiently close to x = xcrit, the marginal social benefits of investing grow

arbitrarily large in the limit as τ gets large while marginal costs at xcrit are bounded, and so the

social planner can always do better by increasing investment at least a little. In contrast, in Section

5 we will see that individual investment choices can put the supply network on the precipice in

equilibrium, and this is not a knife-edge scenario.

4.2. Decentralized investment in relationship strengths.

4.2.1. Setup and timing. Now we formulate a simple, symmetric, model of decentralized choices of

relationship strengths. The decision-makers in this richer model are firms. In each product i, there

is a continuum of separate firms (i, f), where f ∈ [0, 1
|I| ]. The firm (i, f) owns the corresponding

variety, v = (i, f); our notation identifies a firm with its variety. We often abbreviate both by if .

Firms simultaneously choose investment levels yif ≥ 0. Choosing a level yif has a private cost

c(yif ). The random realization of the supply network occurs after the firm chooses its investment

level.17 If a firm chooses an investment level yif , then all sourcing links from its variety (i, f) have

relationship strength

xif = x+ yif .

The intercept x ≥ 0 is a baseline probability of relationship operation that occurs absent any costly

investment. This can be interpreted as a measure of the quality of institutions—e.g., how likely a

“basic contract” is to deliver.18 The main purpose of this baseline level is as a simple channel to

systemically shock relationship strengths throughout the supply network.

The timing is as follows.

1. Firms simultaneously choose their investment levels.

2. The realized supply network is drawn and payoffs are enjoyed.

An outcome is given by relationship strengths xif for all firms if . An outcome is symmetric if all

firms have the same relationship strength: xif = x for all if .

4.2.2. Payoffs and equilibrium. A firm’s payoff at an outcome can be written as

uif = Gif −
1

κ
c(xif − x).

This is the firm’s expected gross profit, Gif , minus the cost of its investment, yif = xif − x, in

relationship strength. We will now discuss the parts of this payoff function in turn.

17The supply network realization is defined as an assignment of depths to all varieties, and the graphs G and G′ from
Section 2. The assumption that investments are made before this realization is technically convenient, as it keeps
the solution of the model symmetric. For example, a firm knows that after some number of stages of production,
disruption-prone contracts will not be needed by its indirect suppliers (e.g., because these suppliers are able to use
generic inputs or rely on inventories). However, the firm does not know how many steps this will take. See Section
6.3.1 for an extension where firms have some information about their depths.
18A natural interpretation is that this is a feature of the contracting environment—concretely, for instance, it could
reflect the quality of the commercial courts.
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We begin with the firm’s costs. We assume that they satisfy the following property, where κ > 0

is a parameter:

Property B′. A firm’s cost is given by 1
κc(xif − x), where the following conditions hold:

(i) x < xcrit;

(ii) c′ is increasing, continuously differentiable, and strictly convex, with c(0) = 0;

(iii) the Inada conditions hold: limy↓0 c′(y) = 0 and limy↑1−x c′(y) =∞.

The first part of this assumption ensures that baseline relationship strength is not so high that

the supply network is guaranteed to be productive even without any investment. The second

part imposes assumptions on investment costs that ensure agents’ optimization problems are well-

behaved. The Inada conditions, as usual, ensure that investments are interior. Here κ plays the

same role as it did in our social planner optimization exercise: scaling down the costs of investing

in relationship strength—and hence achieving a given level of productivity.

We now turn to specifying gross profits at a given outcome. Because we will characterize sym-

metric equilibria, we need to specify the gross profits of a given firm only for symmetric behavior by

other firms. Firms make no gross profits conditional on not producing, and their profits conditional

on producing satisfy the following assumption.

Property C. At a symmetric outcome with reliability r, conditional on being functional, a firm

makes gross profits g(r), where g : [0, 1]→ R+ is a decreasing, continuously differentiable function.

Property C requires that profits are higher when fewer firms are functioning and there is less

competition. Appendix C microfounds this property in the same production network model that

we used to microfound Property A.

Let P (xif ;x, µ) be the probability with which a firm if is functional if firm if ’s relationship

strength is xif and all other firms choose symmetric relationship strengths x inducing reliability r.

Then, under Property C, we have that Gif = P (xif ;x, µ)g(r). Thus, recalling the payoff formula

given at the start of this section, the net expected profit of firm if when it has relationship strength

xif and all other firms have relationships strengths x, resulting in reliability r, is

Πif = P (xif ;x, µ)g(r)− 1

κ
c(xif − x). (4)

Finally, because welfare properties of equilibria will play a role in our analysis, we define social

welfare (for symmetric outcomes). The gross output of production given reliability r has a value of

h(r), as in the previous section on the planner’s problem. (Some of this goes to gross profits and

some to consumer welfare, but the sum is given by h(r).) The planner’s cost function is simply the

total of firms’ costs, ∑

i∈I

∫

f∈Fi

1

κ
c(x− x)df =

1

κ
c(x− x),

where we have used our assumption that the mass of firms in each industry is 1/|I|, so that the

total mass of firms is 1. Thus, if x is the relationship strength of all firms, the social welfare function

is19

Welfare = h(ρ(x, µ))− 1

κ
c(x− x). (5)

19This coincides with the welfare function of the previous section if we set cP (x) = c(x−x) for x ≥ x, and cP (x) = 0
otherwise.



14 MATTHEW ELLIOTT, BENJAMIN GOLUB, AND MATTHEW V. LEDUC

5. Equilibrium supply networks and their fragility

We now study the equilibrium of our model: its productivity and its robustness. This section

builds up to a main result: Theorem 1. We show that in the limit as production networks become

deep, there are three regimes. First, for low values of the parameter κ, there is an unproductive

regime in which equilibrium reliability is arbitrarily low. Next, for intermediate values of κ, there

is a critical regime in which equilibrium relationship strengths are very close to xcrit and arbitrarily

small shocks to relationship strength lead to discontinuous drops in production. Finally, there

is a noncritical regime in which equilibrium relationship strengths are above xcrit and the supply

network is robust to small shocks.

It is worth writing (4) more explicitly. To do this, we calculate P (xif ;x, µ), the probability with

which if is able to produce, as a function of firm if ’s relationship strength xif given that all other

firms choose a symmetric relationship strength x:20

P (xif ;x, µ) := µ(0) + E [1− (1− xif ρ̃(x, d− 1))n]m ,

where d inside the expectation is drawn from the depth distribution µ conditional on depth being

at least 1. Recall from equation (2) in Section 3.1.1 the formula for ρ̃.

Definition 1. We say x ≥ x is a symmetric equilibrium if xif = x maximizes Πif (xif ;x, µ) defined

in (4) for any firm if . It is a symmetric undominated equilibrium if it is a symmetric equilibrium

and, among symmetric equilibria, maximizes the social welfare defined in (5).

When we refer to an equilibrium in the sequel, we mean a symmetric undominated equilibrium

unless otherwise noted. Note that a symmetric equilibrium is defined by the level of relationship

strength x = x+ y realized in it, rather than the level of investment y. This turns out to be more

convenient.

Our equilibrium definition requires that all firms’ investment choices are equal and are mutual

best responses to each other. Lemma 5 in the appendix shows that the efficiency condition selects

the symmetric equilibrium associated with the highest investment level, and hence highest relia-

bility. Note that it is always a best response for a firm to choose zero investment when all others

choose zero investment. Our equilibrium definition abstracts from potential miscoordination on

the zero investment level, or other inefficient ones, by selecting the symmetric equilibrium that

maximizes welfare.

In the limit, as the expected depth of the supply networks becomes large, if firms symmetrically

choose investments yif = 0 then the reliability is ρ(x) = 0 as x < xcrit (by Property B′). Hence,

for large enough τ , xif = x maximizes Πif (xif ;x, µτ ) and so there always exists an equilibrium.

In analyzing the symmetric equilibria it is helpful to make an assumption on the environment

that ensures that the first-order conditions of firms’ problems are sufficient for optimality among

interior solutions. We first state the assumption and then formulate a condition on primitives that

is sufficient for it to hold.

Assumption 1. For any τ and any x > xcrit the function xif 7→ Πif (xif ;x, µτ ) has a unique

interior local maximum for all large enough τ .21

20Note that because there is a continuum of firms the probability that a firm appears in its potential supply network
upstream of itself is 0. Thus the reliability of if ’s suppliers does not depend on xif .
21The assumption permits another local maximum at a corner. We rule this out separately.
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Assumption 1 will be maintained in the sequel, along with Properties A, B′, and C. The following

lemma shows that we may always set x so that Assumption 1 is satisfied.

Lemma 1. For any m ≥ 2, and any n ≥ 2, there is a number22 x̂, depending only on m and n, such

that, for large enough τ we have: (i) x̂ < xcrit; and (ii) if x ≥ x̂, then Assumption 1 is satisfied.

To see why this lemma implies that Assumption 1 is satisfied for a suitable choice of x, consider

any environment where x ∈ [x̂, xcrit). Part (i) of the lemma guarantees that the interval [x̂, xcrit) is

nonempty, and part (ii) guarantees that Assumption 1 is satisfied for values of x in this range.23 In

other words, the lemma guarantees that there is an interval of possible baseline levels of robustness

which are short of the critical level (so that fragility is not ruled out a priori) but high enough to

ensure that the firms’ maximization problem is amenable to a first-order approach.

We now characterize the equilibrium behavior.

Theorem 1. Fix any n ≥ 2, m ≥ 3, and ε > 0.24 There are thresholds κ(n,m) < κ(n,m) and

a threshold τ , so that for all τ ≥ τ there is a unique symmetric undominated equilibrium, with a

relationship strength denoted by x∗τ (κ), satisfying the following properties:

(i) If κ < κ, there is no investment: x∗τ (κ) = x.

(ii) For κ ∈ [κ, κ], the equilibrium relationship strength satisfies x∗τ (κ) ∈ [xcrit− ε, xcrit + ε]. We

call such equilibria critical.

(iii) For κ > κ, the equilibrium relationship strength satisfies x∗τ (κ) > xcrit. We call such

equilibria non-critical.

Moreover, for τ ≥ τ , the function x∗τ (κ) is increasing on the domain κ > κ.

If we think of different supply networks as being parameterized by different values of κ in a

compact set, Theorem 1 implies that in the limit as τ gets large, there will be a positive fraction of

supply networks in which firms will choose relationship strengths converging to xcrit in equilibrium.

This contrasts with the social planner’s solution, which never selects relationship strengths near

xcrit. It also means that a positive fraction of supply networks end up perched on the precipice,

vulnerable to small unanticipated systemic shocks. This vulnerability extends to anticipated shocks,

as discussed in Section 6.2.2.

Figure 5 helps give some intuition for Theorem 1. In any symmetric equilibrium, the reliability

of each firm must be consistent with the symmetric investment level x chosen by all other firms—we

must be somewhere on the reliability curve we derived in Section 2. The graphs labeled ρ(x) in

panels (A)–(D) of Figure 5 illustrate the shape of the reliability curve for large τ . Further, in any

symmetric equilibrium each firm’s (symmetric) investment choice of x must be a best response

to the reliability of its suppliers. The curves labeled BR(x) in panels (A)–(D) depict the best-

response function; these curves should be thought of as having their independent variable (others’

reliability) on the vertical axis, and the best-response investment on the horizontal axis. The

panels show the best-response curves for increasing values of κ. Intersections of these two curves

22In the proof, we give an explicit description of x̂ in terms of the shape of the function P (xif ;x, µτ ).
23While conditions we identify in Lemma 1 are sufficient for satisfying Assumption 1, they are not necessary.
24In this result, we restrict attention to the case of m ≥ 3. It is essential for our results that supply networks are
complex (m ≥ 2), but the case of m = 2 generates some technical difficulties for our proof technique so we consider
m ≥ 3. In numerical exercises, our conclusions seem to also hold for m = 2.
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Figure 5. Panel (A) shows an equilibrium for κ < κ. Panel (B) shows an equilibrium with κ = κ.
Panel (C) shows an equilibrium with κ = κ. Panel (D) shows an equilibrium with κ > κ. Panel (E)
plots how equilibrium reliability varies with κ. Panel (F) shows reliability following an arbitrarily
small negative shock to institutional quality x as κ varies: note the drop for κ ∈ [κ, κ]

correspond to potential symmetric equilibria. When there are multiple intersections, we focus on

the one associated with the highest reliability, which is the one that is selected by Definition 1.

Thus equilibrium reliability is 0 for κ sufficiently small, jumps up discontinuously to rcrit at κ,

and is increasing in κ thereafter. This is shown in panel (E). Reliability clearly increases as κ

ranges over the interval [κ, κ]. Nevertheless, for κ in this interval, equilibrium investment for large
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τ remains arbitrarily close to xcrit, since the equilibrium is on the essentially vertical part of the

reliability curve. In other words, equilibrium investment choices bunch around xcrit for an open

interval of values of κ. For all κ ∈ [κ, κ] a slight shock causing relationship strengths to diminish

from x to x− ε causes relationship strengths to fall below xcrit, and makes equilibrium production

collapse. Panel (F) shows reliability after such a shock for different values of κ. As can be seen by

comparing panels (E) and (F), the shock does not change the values of reliability at κ below κ or

above κ: the curves in (E) and (F) are essentially identical in those ranges. However, for κ ∈ [κ, κ],

reliability drops discontinuously to 0.

We now pause to comment on the techniques used to establish these results. While the intuition

looks straightforward in our sketches, proving Theorem 1 is technically challenging. We have

to get a handle on the shape of the best-response correspondence, and show that the highest

intersection of it with the reliability curve moves as depicted in Figure 5. Investment incentives

(which determine the shape of the best-response curve, and the implications of changing κ) are

complex, and so equilibrium investment is difficult to characterize directly. We do not have an

explicit expression for the best-response curve. It also does not have any global monotonicity

properties that might permit standard comparative statics approaches. Investments in relationship

strength are strategic complements in some regions of the parameter space, and strategic substitutes

in others.25 However, some control on the slopes of the intersecting curves is necessary to analyze

the dependence of the intersection on parameters. A key step in our analysis is showing that if the

highest intersection of best response and reliability curves is at r ≥ rcrit, then the best response

curve must be negatively sloped in r there, and strictly so for an intersection at r > rcrit. We do

so by establishing certain properties of the system of polynomial equations that (asymptotically)

characterizes the intersection. Another cruicial step is to show that there is at most one point of

intersection above rcrit in our diagrams. This permits us to focus on a unique outcome of interest,

and to sign the effects of moving κ unambiguously, which is important for the results on equilibrium

fragility.

At a technical level, there are two parts to many of our proofs. One part focuses on an idealized

“limit supply network,” which, in a suitable sense, has infinite depth and therefore a lot of symmetry

(a firm’s suppliers look exactly like the firm itself). This symmetric network gives rise to expressions

that we can manipulate to establish the key facts mentioned above. There is then a separate task

of transforming these limit results into statements about the supply network with large but finite

depths.

Our next result, Corollary 1, implies that the comparative statics of equilibrium as the baseline

quality of institutions x changes are analogous to those documented with respect to κ in Theorem

1. Here we explicitly include x as an argument in x∗.

Corollary 1. Suppose κ′ > κ. Then, for large enough τ , if x∗τ (κ′, x) > x∗τ (κ, x), there is an x′ > x

such that x∗τ (κ′, x) = x∗τ (κ, x′).

25When a firm’s suppliers are very unreliable, there is little incentive to invest in stronger relationships with them—
there is no point in having a working supply relationship when the suppliers cannot produce their goods. On the
other hand, when a firm’s suppliers are extremely reliable, a firm can free-ride on this reliability and invest relatively
little in its relationships, knowing that as long as it has one working relationship for each input it requires, it is very
likely to be able to source that input.
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5.1. Fragility. Critical equilibria are important because, as the example in Figure 5 shows, they

create the possibility of fragility: small unanticipated shocks to relationship strengths via a reduc-

tion in x can result in a collapse of production. We formalize this idea by explicitly examining how

the supply network responds to a shock to the baseline quality of institutions x, which for simplicity

is taken to have zero probability. (The analysis is robust to anticipated shocks that happen with

positive probability—see Section 6.2.2.)

Definition 2 (Equilibrium fragility).

• There is equilibrium fragility at κ if for any η, ε > 0, for large enough τ , we have

ρ(x∗τ (κ)− ε, µτ ) < η.

That is, a shock that reduces relationship strengths arbitrarily little (ε) from their equilib-

rium levels leads to a reliability very close to 0 (within η).

• We say there is equilibrium robustness at κ if there is not equilibrium fragility.

Note that the definition of equilibrium fragility makes sense only if x∗τ (κ) > 0 for all large enough

τ , and this implies reliability bounded away from zero before the shock, since otherwise there would

be no incentive for investment. In the definition of fragility, while shocking x, we hold investment

decisions and entry choices fixed. This corresponds to the assumption, discussed in Subsection 5.2

below, that investments in supply relationships and entry decisions are made over a sufficiently

long time frame that firms cannot change the quality of their supply relationships or their entry

decisions in response to a shock.

Proposition 3. Under the conditions of Theorem 1, there is equilibrium fragility at any κ ∈ [κ, κ]

and equilibrium robustness at any κ > κ.

Proposition 3 follows immediately from the definition of equilibrium fragility and our previous

characterization.

5.2. Some comments on interpretation.

5.2.1. Sources of shocks. There are many ways in which the small systemic shock involved in our

notion of fragility might arise in practice. In the introduction, we discussed the example of a small

shock to credit markets making many supply relationships slightly more likely to fail, if they happen

to require financing to deal with a disruption. Another example comes from considering new trade

regulations: if there is uncertainty about which relationships will be affected by new compliance

issues, each supply relationship will be ex ante more prone to disruption. For a third example,

consider an increasing backlog in commercial courts—a circumstance that makes contracts more

costly to enforce. This again decreases the probability that contracts function in some states of the

world—an uncertainty that can affect many players in the supply chain. A final example comes from

supply chain stresses due to macroeconomic shocks. Technological factors, such as social distancing

measures imposed during a pandemic, can cause stochastic delays and disruptions throughout the

dependency links in a supply network. Congestion provides another type of stress. For example,

a demand shock to some goods can require ports and transportation hubs to accommodate more

traffic, causing queues. These queues delay shipments of goods in many supply networks, even

those not affected by the demand shocks that caused the queues (McLain et al., 2021).
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5.2.2. Time scales. In interpreting our model, a crucial issue is the time scales on which the con-

tagion occurs, and on which decisions are made. We define the short run to be period of time over

which firms are not able to adjust their relationship strengths. It is this time scale on which the

shock we study has its most direct implications in terms of freezing supply chains. Evidence from

Barrot and Sauvagnat (2016) suggests that in practice this time scale is on the order of magnitude

of several quarters. In contrast, the medium run as a period of time over which adjustments in

relationship strength are possible.26 Thus, following a shock to relationship strengths, in the short

run a collapse in production will occur when the supply network is in the fragile regime—that is,

holding investments in relationship strengths at their old values. In the medium run, it is possible

that firms can choose investment levels that allow the supply network to resume being productive.

Our equilibrium selection here is optimistic: it focuses on the outcome where, in recovering from

the shock, firms coordinate on the most productive investment equilibrium, and thus limit the

losses. Alternatively, once production has become disrupted, it could be that firms stop investing

altogether. If such coordination problems occur, disruptions can be longer-lasting and consistent

with long-lasting productivity damage following a shock.

6. Discussion of the model

This section discusses our modeling choices. First, in Section 6.1 we highlight which features of

our environment are essential, and motivate them. Beyond the key assumptions, we make a variety

of assumptions for tractability or simplicity. In Section 6.2, we discuss the robustness of our model

to various relaxations of these non-essential assumptions.

6.1. Essential features. The three essential features that we highlight are that supply rela-

tionships are specific (firm-to-firm) and subject to disruption; that firms endogenously invest to

strengthen their relationships; and that production is complex in that it relies on multiple essential

inputs at each of a sufficiently large number of layers.

Specific sourcing relationships that are subject to idiosyncratic disruptions are a crucial feature

of our model. Supplier relationships have been found to play important roles in many settings—for

relationship lending between banks and firms see Petersen and Rajan (1994, 1995); for traders in

Madagascar see Fafchamps and Minten (1999); for the New York apparel market see Uzzi (1997);

for food supply chains see Murdoch, Marsden, and Banks (2000); for the diamond industry see

Bernstein (1992); for Japanese electronics manufacturers see Nishiguchi (1994)—and so on. Indeed,

even in fish markets, a setting where we might expect relationships to play a minor role, they seem

to be important (Kirman and Vriend, 2000; Graddy, 2006). The importance of specific sourcing

relationships in supply networks is also a major concern of the management literature on supply

chains (Datta, 2017). Barrot and Sauvagnat (2016) find that firms have difficulty switching suppliers

even when they need to do so. These literatures examine many reasons behind firms’ reliance on a

small number of suppliers to source a given type of input. For example, technological compatibility

and geography can limit the pool of potential suppliers; hold-up problems can make trust important;

and frequent repeated interactions can help firms to avoid misunderstandings.

26Other technological dimensions, such as the complexity m of production, might change on a longer time scale still;
see Section 8.4.
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The specific relationships that firms maintain for sourcing facilitate the contagion of disruption.

Indeed, cascading disruptions (see, for example, Carvalho et al. (2020)) are evidence of firms’ re-

liance on failure-prone sources of supply that cannot be quickly replaced. Interesting qualitative

descriptions of cascades of disruption due to idiosyncratic shocks can be found in the business litera-

ture. A fire at a Philips Semiconductor plant in March 2000 halted production, preventing Ericsson

from sourcing critical inputs, causing its production to also stop (The Economist , 2006). Ericsson

is estimated to have lost hundreds of millions of dollars in sales as a result, and it subsequently

exited the mobile phone business (Norrman and Jansson, 2004). In another example, two strikes

at General Motors parts plants in 1998 led 100 other parts plants, and then 26 assembly plants,

to shut down, reducing GM’s earnings by $2.83 billion (Snyder et al., 2016). Though these partic-

ular examples are particularly well-documented, disruptions are a more frequent occurrence than

might be expected. In a survey of studies on this subject in operations and management, Snyder

et al. (2016) write, “It is tempting to think of supply chain disruptions as rare events. However,

although a given type of disruption (earthquake, fire, strike) may occur very infrequently, the large

number of possible disruption causes, coupled with the vast scale of modern supply chains, makes

the likelihood that some disruption will strike a given supply chain in a given year quite high.” An

industry study recorded 1,069 supply chain disruption events globally during a six-month period

in 2018 (Supply Chain Quarterly, 2018).

Given the frequency of disruptions and the impact these can have on firms’ profitability,27 it is

natural that firms take actions to mitigate them. In practice, these investments are often “soft”

in nature. A literature in sociology helps document them—a prominent contribution being Uzzi

(1997), who offers a detailed account of the systematic efforts and investments made by New York

garment manufacturers and their suppliers to maintain good relations. These investments include

practices such as building a better understanding of a supplier’s or customer’s capabilities by visiting

their facilities, querying odd instructions to help catch mistakes, building social relationships that

span the organizations, and reciprocal gift-giving. Such investments are hard to observe and even

harder to verify. This makes them hard to contract on and fits the way we model investments—as

a decentralized game of private investment in one’s local relationships.28

It is crucial for our theoretical results that production is complex. One aspect of complexity is in

the horizontal dimension of our network diagrams: firms need multiple inputs via specific sourcing

relationships. Barrot and Sauvagnat (2016) provide evidence that supports this assumption. They

show that if a supplier is hit by a natural disaster it severely disrupts the production of their

customers and also negatively impacts their customers’ other suppliers. If production were not

complex in this way, then these other suppliers would be providing substitute inputs and hence

would benefit from the disruption to a competitor rather than being adversely affected. Similarly,

this suggests that inventories are not held at high enough levels to avoid disruption, though they

27Hendricks and Singhal (2003, 2005a,b) examine hundreds of supply chain problems reported in the business press.
Even minor disruptions are associated with significant and long-lasting declines in sales growth and stock returns.
28The key feature here is the modeling of investment as a non-cooperative game. Even if firms were allowed to invest
in others’ relationships they would typically not want to in equilibrium. Following the logic of Bergstrom, Blume,
and Varian (1986) each firm will be willing to invest in each relationship (between any two firms) up to the point that
the marginal return of the investment equals the marginal benefits. However, the marginal benefits are heterogeneous
and it will typically only be possible for this condition to be satisfied by the firm that has the highest marginal benefit
of investing.
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may help delay it. Another aspect of complexity is that production takes place in multiple layers—

i.e., is sufficiently deep. As we show in Section SA4 of the Supplementary Appendix, even without

taking any limits, realistic degrees of complexity either in the horizontal or vertical dimension

generate patterns that have the key qualitative features driving our main results.

An example of a firm with a relatively complex supply chain is Toyota. After the Great East

Japan Earthquake Toyota suffered considerable disruption to its supply network due, in part, to

the impact on firms several layers upstream of it. Following this, Toyota made an effort to map out

its supply network so it could better anticipate and respond to such problems. It has been reported

that despite remaining incomplete this mapping got as far as the tenth level and identified 400,000

items that Toyota sources directly or indirectly (McLain, 2021).

One final observation is that our model can be reinterpreted as describing processes or inputs,

rather than firms, as long as the key conditions outlined in this section hold. From this perspective,

the phenomena we discuss may happen within a firm or other organization. Increasing the strength

of relationships would then correspond to increasing various forms of redundancy or robustness

in sourcing. When agency frictions are significant and decisions about robustness are made in a

decentralized way, our model of endogenous investments would also be relevant.

6.1.1. Contrasts with models without the essential features. In this subsection, we briefly consider

two alternative models, which we consider useful benchmarks, to highlight the necessity of key

features discussed in the previous section.

Contrast I: Sourcing through spot markets. In this benchmark, each firm sources all its

inputs through spot markets, rather than requiring pre-established relationships. The market is

populated by those potential suppliers that are able to successfully produce the required input. To

keep the technology of sourcing comparable, we posit that, after a buyer places an order in this

spot market, there is still a chance that sourcing fails. (A shipment might be lost or defective, or a

misunderstanding could lead the wrong part to be supplied.) In other words, we now assume each

firm extends relationships only to functional suppliers (as opposed to suppliers whose functionality is

random, in our main model), but we still keep the randomness in whether the sourcing relationships

work.

We now work out which firms can produce, focusing on the example where each firm requires two

inputs (m = 2). Each firm if multisources by contracting with two potential suppliers of each input

(n = 2)—selected from the functional ones. Let the probability a given attempt at sourcing an

input succeeds be x, independently. The probability that both potential suppliers of a given input

type fail to provide the required input is (1 − x)2, and the probability that at least one succeeds

is 1 − (1 − x)2. As the firm needs access to all its required inputs to be able to produce, and it

requires two different input types, the probability the firm is able to produce is (1 − (1 − x)2)2.

In Figure 6 we plot how the probability that a given firm is able to produce varies with the

probability its individual sourcing attempts are successful. This probability increases smoothly as

x increases. This benchmark thus shows that perfect spot markets remove the discontinuities in

our main analysis.

On the other hand, the fragility of complex production remains a concern even in the presence

of imperfect substitutes for specifically sourced inputs. More precisely, suppose the quality of a
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Figure 6. The probability of successful production for a firm as market-based sourcing attempts
become more likely to succeed.
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Figure 7. (A) The probability of successful production of a simple good (m = 1 distinct inputs
needed) as relationship strength varies. (B) The probability, Rx(r), that a focal firm is functional
as a function of r, the probability that a random supplier is functional. This plot is for n = 3 with
x ∈ {0.3, 0.35, 0.4, 0.5, 0.65}. The plot parallels Figure 4(A), which depicts the same function for
the complex production (m > 1) case. The marked intersections with the 45 degree line reflect
limit reliability outcomes.

firm’s output is discounted by a certain factor whenever it can’t source high-quality inputs for all

customized inputs required; such a firm instead produces a lower-quality version of its good. Such

a shock propagates downstream just as in our main analysis, but where affected firms can still

produce low-quality goods.

Contrast II: Sourcing for simple production. To emphasize that it is essential that multiple

inputs are sourced through relationships, we consider a benchmark model where each firm requires

only a single relationship-sourced input (m = 1). Because each firm requires only one type of

risky input relationship to work, we call such production simple.29 We plot how the probability of

29As a matter of interpretation, there may be more than one physical input at each stage. The key assumption is
that all but one are sourced as commodities rather than through relationships, and so are not subject to disruption
via shocks to these relationships.
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successful production varies with relationship strength in Figure 7(a) for an example with n = 2. In

comparison to the case of complex production illustrated in Figure 3(b), there is a stark difference.

For values of x < 0.5 the probability of successful production is 0, and for values of x > 0.5 the

probability of successful production is strictly positive. The contrast is in the nature of the change

at x = 0.5, where productivity is continuous in the simple-production case, though the derivative

is discontinuous.

The intuition is familiar from the networks literature and in particular from studies of contagion

(see, for example, Elliott, Golub, and Jackson (2014) in the context of financial contagion, or

Sadler (2020) for information diffusion). In the large-depth limit, production will be successful if

the supply tree of functional producers upstream of a given firm continues indefinitely, rather than

being extinguished due to an excess of failures. This depends on whether the rate at which new

branches in the network are created is higher or lower than the rate at which existing branches die

out due to failure. It turns out that when x > 0.5, a supply tree grows without bound in expectation,

while when x < 0.5 it dies out.30 The kink in the probability of successful production around the

threshold of 0.5 is related to the emergence of a giant component in an Erdös–Rényi random graph.

That continuous phase transition is different from the discontinuous one driving our main results.

Indeed, to see the importance of the difference in these phase transitions for equilibrium fragility,

consider a productive equilibrium when production is simple. It can immediately be seen from

Figure 7(a) that a small shock to reliability x will only cause a small change in the probability of

successful production. In contrast to the complex production case, the reliability curve does not

become arbitrarily steep as we increase the depth of the supply network.

6.2. Robustness: Extensions relaxing simplifying assumptions. In this section we discuss

directions in which the analysis can be extended to show that certain simplifying assumptions are

not essential to the main findings. We begin with extensions to the model in which firms remain

homogeneous (in the distribution of their network positions), and then turn to heterogeneities in

the next subsection.

6.2.1. Investments on the extensive margin. Our modeling of investments in supply relationships

is compatible with multiple interpretations. The first interpretation is that the set of possible

suppliers is fixed, and the investment works on the intensive margin to improve the quality of

these relationships (e.g., by reducing misunderstandings and so on). The second interpretation is

that the investment works on the extensive margin—i.e., firms work to find a supplier willing and

able to supply a given required input type, but their success is stochastic. In this interpretation

there is a fixed set of n potential suppliers capable of supplying the required input to be found,

and each one of them is found independently with probability xif .31 Conditional on a supplier

30Given that each producer has two potential suppliers for the input, and each of these branches is operational with
probability x, the expected number of successful relationships a given firm in this supply network has is 2x. When
x < 1/2, each firm links to on average less than 1 supplier, and so the rate at which branches in the supply tree fail
is faster than the rate at which new branches are created. The probability that a path in the supply network reaches
beyond a given tier l then goes to 0 as l gets large and production fails with probability 1. On the other hand, when
x > 1/2, the average number of suppliers each firm has an operating relationship with is greater than 1 and so new
branches appear in the supply tree at a faster rate than they die out, leading production to be successful with strictly
positive probability.
31This search technology is similar to ball-and-urn models of search, and is compatible with a matching function
exhibiting constant returns to scale (see, for example, Hall (1979)).
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being found, the relationship is operational. In Supplementary Appendix SA6 we discuss a richer

extensive-margin interpretation, and also one that permits separate efforts to be directed to the

extensive and intensive margins simultaneously.

6.2.2. Anticipated shocks. We assume that the small shock to x is unanticipated. It is straightfor-

ward to use our analysis to see that this is not essential. Suppose now all firms anticipate that

a shock to x will happen with some probability pshock, and suppose κ is in an open subset of the

critical productivities, so that a collapse would have occurred in the baseline model. When we

write the profit function for firms in the extended model, there will now be an expectation over the

shock’s arrival, and this will change profits and the best-response correspondence. However, for a

small enough probability of the shock, this change will be small, and the best-response curve in a

plot such as Figure 5(c) will move only slightly. Thus the equilibrium will still be on the precipice

if it was before. Indeed, for κ not too close to the boundary of the critical productivities, the

probability of the shock can be quite substantial without changing the main prediction. The key

intuition is that because of externalities, while all firms may prefer a commitment to invest more

to avoid being on the precipice (and avoid disruptions due to the shock), the free-riding problem

can be too severe to achieve this. Indeed, note that in Figure 5, even fairly large shifts in the best-

response curve can leave the equilibrium on the precipice, implying that these free-riding effects

are considerable.

6.2.3. Shocks to firms. The fundamental source of shocks in our model is at the level of links in the

supply network. One could also consider shocks directly hitting firms—i.e., shocks to nodes in our

supply network rather than links. The key conclusions regarding precipices are robust to adding

this source of shocks, or even making node-level shocks the main source of disruptions.32 We focus

on shocks to relationships for simplicity, but the mathematical forces we identify also operate in

alternative models of disruption.

6.2.4. Endogenous entry. Our model takes the varieties in the market as given, and does not include

entry decisions by firms. This is done to keep the model simple. However, the key insights carry

over in a model with entry.

Consider an extended model where there is an entry stage preceding all others. At this stage, a

firm (i, f) pays a sunk entry cost Φ(f), where Φ is a strictly increasing function. Then the measure

of varieties in each product is set equal to the measure of entering firms (i.e., each entering firm

produces one variety), and the “investment game” where firms choose their relationship strengths

proceeds as we described earlier. A (nontrivial) symmetric equilibrium is now one where f > 0

firms enter in each product and the expected post-entry profits of the marginal firm are equal to

its entry cost.

The main observation is that this model also features an open set of productivity parameters

κ where equilibrium production is on the precipice. The basic logic is as follows. When the

supply network is reliable and gross profits after entry are high, firms want to enter. As they

enter, competition drives down gross profits and makes it less appealing to pay costs to make

relationships strong. Recalling Figure 5, the key to the argument is that increasing entry moves

the best-response curve leftward for a given κ. So, in equilibrium, relationships get weaker as more

32This variant of the model is worked out in Elliott and Golub (2021).
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entry occurs. The question is where this dynamic stops. The precipice is a natural stopping point.

Once the investment level is xcrit, reliability can adjust down until further entry is deterred, while

investment remains the same. By reasoning parallel to that of our main results, this state is reached

for an open set of model parameters.

6.3. Robustness to heterogeneity. We have so far assumed for tractability that all firms have

identical network positions ex ante. One might suspect that the regularity of the network structure,

or some other kind of homogeneity, plays an important role in generating the sharp transition in the

probability of successful production. In contrast with the key roles played by complexity, specific

sourcing, and depth, homogeneities across the firms are not important to our main points. To

establish this, we now discuss extensions with two forms of heterogeneity in firm type.

6.3.1. Partial knowledge of depth. We have assumed that firms make investments ex ante of the

realization of their supply network depths, so that when they face their investment decisions, they

have identical decision problems. This implies that they all have identical investment incentives,

a symmetry that simplifies the analysis considerably. However, in practice, firms do have some

information about the depth of their supply networks. We now introduce this into the model and

give conditions under which our main findings extend.

We refer to the model analyzed in Sections 3–5 as the baseline model, and we will define the

model with partial knowledge of depths with reference to it.

The firms are now partitioned into two types: low-depth firms, with depth less than or equal

to dl ≥ 0, constitute a proportion µl < 1 of the population, and high-depth firms, with depth

greater than dl, constitute the remainder. (We discuss the case of more than two types below.)

Firms’ information about depth consists of knowing which type they are. We use the subscript l

for low-depth firms and h for the high-depth firms.

Each type of firm has gross profits from production equal to gt(rt), where rt is the aggregate

reliability of that type of firm (t = l for low-depth firms, and t = h for high-depth ones). This

amounts to assuming that each type of firm sells into a separate market, and its gross profits are

dependent on competition in that market through rt. Similarly, each type of firm has a cost function
1
κt
ct. The model is otherwise the same, with the functions gt and ct satisfying the assumptions

made on g and c, respectively, in the homogeneous model.

We now extend the definition of equilibrium to allow low-depth and high-depth firms to behave

differently; equilibrium again refers to a symmetric Nash equilibrium that is not Pareto-dominated

by any other symmetric equilibrium, but where symmetric now means that strategy depends only

on type. We let the vector x∗τ (κl, κh) denote relationship strengths for the low-depth and high-depth

firms in such an equilibrium.

Our focus will be on the high-depth firms. We thus define an equilibrium to be fragile if, for large

enough typical depth, a very small shock causes the high-depth firms to have very low reliability.

Definition 3 (Equilibrium fragility with partial knowledge of depth). There is equilibrium fragility

at κ = (κl, κh) if for any η, ε > 0, for large enough τ , we have

ρh(x∗τ (κ)− ε, µτ ) < η.

That is, a shock that reduces relationship strengths arbitrarily little (ε) from their equilibrium

levels leads to a reliability very close to 0 (within η) for the high-depth firms.
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Proposition 4. Suppose there is equilibrium fragility at κ in the baseline model under gross

profit function g. Then in a partial knowledge of depth model with gh = g, the following holds: If

x∗h(κ) > 0 for all sufficiently large τ (i.e. there is positive investment), then there is also equilibrium

fragility.

To gain some intuition for the result, note that in a (symmetric undominated) equilibrium,

the high-depth firms take the reliability of the low-depth firms as given. In particular, all low-

depth firms that the high-depth firms source from are at depth exactly dl and hence have the

same reliability. For κh = κ the high-depth firms are then in an equivalent position to firms in

our baseline model, except that the firms at depth dl play the role of the depth-zero firms in

the baseline model. In that model, the depth zero firms have reliability 1. In the partial depth

knowledge model, the depth dl firms have some reliability r ≤ 1. Nevertheless, as long as r ≥ rcrit

this difference does not matter for τ sufficiently high. The reason for this is that in both cases,

given the same investment decisions for the high-depth firms, limit reliability will be the same as

in the baseline model for those firms by the argument in Subsection 3.1.1. Our assumption that

there is equilibrium fragility at κ in the baseline model implies that, in that model, the limit of

equilibrium investment is xcrit. The proof shows that there will also be limit investment xcrit for the

high-depth firms in the symmetric undominated equilibrium of the extended model (as τ →∞).

This leaves the case when the reliability of the depth d` firms is r < rcrit. We just need to show

that in this case limit reliability is either 0 or rcrit. Hence it is sufficient to rule out limit equilibrium

investment x > xcrit. Such investment cannot be supported in equilibrium for the same reasons

that it could not be supported in the corresponding baseline model.

It is important for interpreting Proposition 4 that we know the high-depth firms are sometimes

in the first positive-investment case, since positive investment is required for equilibrium fragility

to make sense. To show that the positive-investment assumption is not vacuous, note that we can

always set κl sufficiently high to induce equilibrium investments for the low-depth firms above xcrit,

which is sufficient for ensuring the reliability of depth dl firms is above rcrit.

When there is equilibrium fragility, it is only the high-depth firms that are affected. Moreover,

the low-depth firms operate independently of the high-depth firms, and so even if production is

disrupted for all the high-depth firms, the low-depth firms can still produce. This readily extends

to a finer partitioning of firms by their depth. In this case, those firms in all but the highest depth

group have bounded depth and behave like the low-depth firms; the highest-depth group would

behave like the high-depth firms. Extending the model to include partial knowledge of depth, as

we have done in this section, changes the quantitative implications of the model—fewer firms in

a supply chain will be on the precipice—but not the qualitative implications insofar as a positive

mass of the firms will be on the precipice. The discussion in Section 6.1 suggests that a considerable

number of high-value products would be included in this set.

It is worth noting that, for simplicity, we have firms depend on others upstream of themselves

(their suppliers, their suppliers’ suppliers, and so on) but not downstream.33 If the profits of

low-depth firms were instead derived from selling to high-depth firms, then the inability of the

high-depth firms to produce would, via reduced demand for the low-depth firms’ products, affect

33In our microfoundations (Appendix C), the upstream but not downstream dependence is modeled by letting all
firms sell to final consumers, and letting all profits be derived from such sales.
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the profitability of production for the low-depth firms and they might not be able to profitably

produce, either. This type of propagation could be incorporated in to the specification of the

gross profit function g. Baqaee (2018) offers a detailed study of such contagion of failure in both

directions in a different model.

6.3.2. Heterogeneous product networks. We now consider an extension of our model with flexible

heterogeneity in network structure. We focus in this subsection on the mechanics of how reliability

depends on relationship strengths. In the Supplementary Appendix (Section SA5) we flesh out the

details rigorously and also present an extension of the endogenous investment model.

The key point in this heterogeneous extension is that the number of inputs required, m, and the

number of potential suppliers, n, is no longer held fixed across the supply network; these are allowed

to vary with the product. More formally, there is a finite set of products, I. Each product i ∈ I is

associated with a product complexity mi and a finite set of inputs I(i) ⊆ I of cardinality mi. Thus,

the number of inputs required can be different for different products. The neighborhoods I(i) define

the product dependence graph, with the convention that arrows are directed upstream. For each firm

producing product i, each needed input j can be supplied to the firm by nij potential suppliers. For

each pair i, j ∈ I, there is a relationship strength xij such that every link from a firm producing

i to a potential supplier of product j has a probability xij of being operational, irrespective of

depth. The product dependence graph is illustrated in Figure 8(A), while the heterogeneities in

the number of multisourcing possibilities and in link strength are illustrated in panel (B). We

denote by x = (xi)i∈I the profile of relationship strength vectors for the different products. We let

xi = (xi,j)j∈I(i).
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Figure 8. Panel (A) depicts a product dependence graph in the heterogeneous case. An arrow
from a to b means that b is an input required in the production of a, i.e. b ∈ I(a). Product b
requires mb = 3 inputs (products a, c and d). Other products require 2 inputs and thus mi = 2
for i ∈ {a, c, d, e}. There are two strongly connected components: {a, b, c, d} and {e} (which is
highlighted). Panel (B) shows a potential supply network for variety a1. Here input products b
and d are required, as indicated in (A), and the number of potential suppliers of each input can be
different: there are nab = 2 potential suppliers of input b while there are nad = 3 potential suppliers
of input d. Moreover, the relationship strength is input-specific, with xa1,b being possibly different
from xa1,d.

Analogously to our main model, we introduce depths of each variety. Depth-zero varieties are

those that require no specifically sourced inputs. We specify the matching process so that each

variety sources from varieties of strictly smaller depth. Subject to this, we allow a flexible distribu-

tion of input depths, relaxing the requirement from the baseline model that all suppliers of a given

firm are exactly one level less deep. We are again interested in the limit as depths of most firms
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become arbitrarily large. In Appendix SA5 we present the details of this setup and characterize

this limit, paralleling Section 3.1 in the homogeneous case. This analysis yields a limit reliability

correspondence ρ mapping x to a profile (ri)i∈I of reliabilities. The correspondence has the prop-

erty that, for any x, if depths are sufficiently large, the reliabilities are arbitrarily close to those

given by ρ.

Our first main result is that the sharp transition in the production function persists in the

heterogeneous model. There are values of the vector x where arbitrarily small shocks to relationship

strengths result in large drops in reliability. The following definition is helpful for making this point:

Definition 4 (Critical product). The product i is critical at x if the product has positive reliability

ρi(x) > 0 at strengths x, but has reliability ρi(x
′) = 0 at any profile x′ of strengths that is

elementwise strictly lower than x.

In Section SA5.1 we generalize Proposition 1 by giving conditions guaranteeing that critical products

exist in the heterogeneous model. The key condition is, as before, that production requires mi ≥ 2

distinct inputs at each step.

We next show that supply networks in the presence of heterogeneities feature a weakest link

property (Proposition 5): When one product is critical, all products that rely directly or indirectly

on it are critical as well.34 This result uses the notion of a product dependence graph, whose nodes

are a set I of products, and products have directed links to the input products they require (see

Figure 8(A) for an illustration).

Proposition 5 (Weakest link property).

(i) Suppose product i is critical. Then any product that has a directed path to i in the product

dependence graph is critical.

(ii) Let ISC ⊂ I be a set of products that are part of a strongly connected component of the

product dependence graph. Then any equilibrium with positive effort is such that either all

producers of products i ∈ ISC are critical or no producers of products i ∈ ISC are critical.

Proposition 5 asserts that supply networks suffer from a weakest link phenomenon. First, in Part

(i), we see that if a product is critical, then any small systemic shock (which causes it to fail, by

definition of criticality) causes the failure of all other products that use it as an input, directly or

indirectly. For example, in Figure 8(A), we see that if product b is critical, then a small systemic

shock to relationship strengths causes its production to fail and will also cause products a, c, d and

e to fail. Products a, c, d fail because they use b directly as an input. Product e fails because it

indirectly uses product b as an input (through a and d).

Second, in Part (ii), we begin by recalling that a strongly connected component of the product

dependence graph is a set of nodes (i.e. products) where each node can be reached from any other

node in that set by following some directed path of dependencies. For example, in the product

dependence graph of Figure 8(A), the nodes represented by full black circles (a, b, c and d) form

such a strongly connected component. Node e is not part of this component since it cannot be

reached from the other nodes by following the direction of the arrows. A strongly connected

component of products is a set of products such that each product is used as input (directly or

34Thus, as in Bimpikis, Ehsani, and Ilkılıç (2019b) the social planner has different gains from intervening in different
parts of the network (see their Proposition 8).
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indirectly) by every other product of that set. This is precisely the intuition behind the fact that

such a component is only as strong as its weakest link. Indeed, if one product is critical, then all

products in that component are also critical at the same time.

In Section SA5.3 of the Supplementary Appendix, we provide proofs supporting this section and

illustrate both the discontinuities and the weakest link property with numerical examples. We also

extend our endogenous investment model and show that the configurations we have described are

consistent with strategic investment in relationship strength.

7. Related literature

We have already discussed many papers that are relevant for motivating our assumptions or

interpreting our results in Section 6. In this section we review several high-level connections to

related literatures not covered by our previous discussions.

There has been considerable recent interest in markets with non-anonymous trade mediated by

relationships.35 The work most closely related to ours in this area also studies network formation

in the presence of shocks. This includes work in the context of production (e.g., Fafchamps (2002),

Levine (2012), Brummitt, Huremović, Pin, Bonds, and Vega-Redondo (2017), Bimpikis, Candogan,

and Ehsani (2019a), Yang, Scoglio, and Gruenbacher (2019), Amelkin and Vohra (2019)), work on

financial networks (e.g., Cabrales, Gottardi, and Vega-Redondo (2017), Elliott, Hazell, and Georg

(2018), Erol (2018), Erol and Vohra (2018), Jackson and Pernoud (2019)), and other contexts

(e.g., Blume, Easley, Kleinberg, Kleinberg, and Tardos (2011) Jackson, Rodriguez-Barraquer, and

Tan (2012), Talamàs and Vohra (2020)). More broadly, the aggregate implications of relying on

relationships to transact have been studied across a variety of settings. For work on thin financial

markets see, for example, Rostek and Weretka (2015), for buyer-seller networks see, e.g., Kranton

and Minehart (2001), and for intermediation see, e.g., Gale and Kariv (2009). Our work focuses

on network formation for production and emphasizes the distinctive network formation concerns

that arise due to strong complementarities. At a methodological level, we offer an approach that

may be useful more broadly. Agents make a continuous choice that determines the probability of

their relationships operating successfully. The links that form may, however, fail in a “discrete”

(i.e., non-marginal) way. The first feature makes the model tractable, while the second one yields

discontinuities in the aggregate production function and distinguishes the predictions from models

where the aggregate production function is differentiable. It might be thought that aggregating over

many supply chains, these discontinuities would be smoothed out at the level of the macroeconomy;

we show they are not.

There is a vibrant literature in macroeconomics on production networks. This literature dates

back to investigations of the input-output structure of economies and the implications of this

(Leontief, 1936). Carvalho and Tahbaz-Salehi (2019) provides a comprehensive survey.

Two recent developments in the literature are particularly relevant to our work: (i) the modeling

of the endogenous determination of the input-output structure; and (ii) a firm-level approach

as opposed to considering inter-industry linkages at a more aggregated level. Some of the most

relevant work on these issues includes Atalay, Hortacsu, Roberts, and Syverson (2011), Oberfield

(2018), Carvalho and Voigtländer (2014), Acemoglu and Azar (2020), Boehm and Oberfield (2020),

35A literature in sociology emphasizes the importance of business relationships, see for example Granovetter (1973)
and Granovetter (1985). For a survey of related work in economics see Goyal (2017).
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Tintelnot, Kikkawa, Mogstad, and Dhyne (2018), Liu (2019), Acemoglu and Tahbaz-Salehi (2020),

and König, Levchenko, Rogers, and Zilibotti (2019). Baqaee and Farhi (2019) and Baqaee and Farhi

(2020) focus specifically on the implications of nonlinearities, and discuss how nonlinearities in firms’

production functions propagate and aggregate up. Whereas they focus on smooth nonlinearities, we

show that especially extreme nonlinearities—discontinuities—naturally come from complex supply

networks. We have discussed throughout how our explicit modeling of sourcing failures in complex

production at the micro level gives rise to new effects (see Section 6.1.1).

The strong complementarities in production in our model are crucial for creating fragility, and

this aspect of our work builds on a large literature following the seminal work of Kremer (1993).

This literature argues that complementarities can help provide a unified account of many economic

phenomena. These include very large cross-country differences in production technology and ag-

gregate productivity; rapid output increases during periods of industrialization; and the structure

of production networks and international trade flows; see, among many others, Ciccone (2002),

Acemoglu, Antràs, and Helpman (2007), Levchenko (2007), Jones (2011) and Levine (2012).36 A

possible concern with this literature is that if firms were allowed to take actions that mitigate

supply risks (for example, by multisourcing), that this would endogenously dampen the crucial

complementarities. Our work helps address this concern. We show that even when firms can take

actions to mitigate their risk by multisourcing, a very severe form of equilibrium fragility—and

hence production complementarities—arises.

At a technical level, our work is related to a recent applied mathematics literature on so-called

multilayer networks and their phase transitions (Buldyrev, Parshani, Paul, Stanley, and Havlin,

2010). Discontinuities such as the one we study are termed first-order phase transitions in this liter-

ature.37 Buldyrev, Parshani, Paul, Stanley, and Havlin (2010), and subsequent papers in this area

such as Tang, Jing, He, and Stanley (2016) and Yang, Scoglio, and Gruenbacher (2019), study quite

different network processes, typically with exogenous networks. We show that discontinuous phase

transitions arise in canonical models of production networks, once specific sourcing relationships

are taken into account. Importantly, we also endogenize investments affecting the probabilities of

disruption (which are taken to be exogenous in this literature) and elucidate a new economic force

endogenously putting equilibria on a precipice. Dasaratha (2021) studies endogenous investment

in a random network in an information-sharing model without aggregate uncertainty. Predating

the recent literature just discussed, Scheinkman and Woodford (1994) used insights from physics

models on self-organized criticality to provide a “sandpile” model of the macroeconomy in which

idiosyncratic shocks have large aggregate effects.38 The setup and behavior of the model are rather

different from ours: the main point of commonality is in the concern with endogenous fragility.

In our model, investments in supply relationships leave the supply network robust to idiosyncratic

shocks, but very sensitive to arbitrarily small systemic shocks to relationship strength.

36Prior to his literature, Jovanovic (1987) examines how strategic interdependencies or complementarities can produce
aggregate volatility in endogenous variables despite only seemingly “diversifiable” idiosyncratic volatility in exogenous
variables.
37These can be contrasted with second-order phase transitions such as the emergence of a giant component in a
communication network, which have been more familiar in economics—see Jackson (2008).
38Endogenously, inventories reach a state analogous to a sandpile with a critical slope, where any additional shock
(grain dropped on the sandpile) has a positive probability of leading to an avalanche.



31

8. Concluding discussions

We conclude by sketching some implications of our analysis. We first note some basic welfare

implications of the model, complementing the descriptive analysis of fragility that has been our focus

so far. We then turn to the implications for policy approaches aimed at improving the robustness of

supply networks. Finally, we briefly suggest some potential applications of the precipice phenomena

in macroeconomic modeling and studies of industrial development.

8.1. Welfare implications. In Section 4.1 we showed that a planner would never choose invest-

ments that result in the supply network being fragile. On the other hand, in Section 5 we found

that decentralized investment choices often result in fragile supply networks. We now show that

there is systemic underinvestment in reliability at fragile equilibria and discuss the structure of

externalities.

There are three externalities present when a firm chooses its reliability. First, there is the non-

appropriability of consumer surplus. Output is higher when more firms function, and this is not

fully internalized in a firm’s reliability choice even with respect to adding its own variety to the

mix, since the firm appropriates only part of the surplus. Second, there are reliability spillovers:

firms don’t internalize their contributions to helping other varieties function. The reliability of a

firm’s intermediate good production increases the reliability, and hence profitability, of those firms

sourcing from it, the firms sourcing from these firms, and so on. Both the non-appopriability of

consumer surplus and the reliability spillover lead to underinvestment in reliability (all else equal).

On the other hand, there is also a business-stealing effect. Producers of a good make fewer sales

when more producers of the same good are functional. This is a force for overinvestment, all else

equal, as firms jockey to capture a larger share of the market.39

Consider a critical equilibrium. We know from Section 4.1 that reliability investments are never

efficient in a fragile equilibrium. The marginal improvement in reliability from a uniform increase in

investments is arbitrarily large—indeed, this is how we concluded that the planner never chooses re-

liability that leads to a fragile supply network. So, in a critical equilibrium, the non-appropriability

of consumer surplus and reliability spillovers together dominate the business-stealing effect, and

there is underinvestment in relationships relative to an efficient benchmark.

In fact, something much stronger than this is true: there is always underinvestment in relation-

ship strengths in a productive equilibrium. This result follows from the proof of Lemma 5 in the

appendix, which underlies our selection of the high-reliability equilibrium as the efficient one.

Corollary 2. Suppose we have a symmetric equilibrium with relationship strengths x ≥ xcrit.

Then40 x < xSP (κ, µ).

This motivates an interest in policies that increase investment, as this both increases welfare and

has the potential to mitigate fragility. We turn to these next.

8.2. Implications for policies supporting investment and robustness. Counteracting un-

derinvestment and removing fragility is not straightforward. Here we discuss several intuitive policy

39Higher investments in reliability increase the probability a firm is able to function and compete, and so can be
interpreted as an investment in (stochastic) entry. In light of this it is unsurprising that the usual non-appropriability
of consumer surplus and business-stealing effects are present.
40Note that xSP (κ, µ) is single-valued for such values of x, so we may treat xSP as a function here, abusing notation.
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interventions that have limited effects, and others that have more potential to qualitatively change

the robustness of the system.

As we noted in Section 5.2.2, we view investments as being chosen in the medium run, an ex ante

decision that does condition on shock realizations. Some policies will affect investment decisions on

this timescale. In contrast, a shock causes disruption in the short run, a timescale on which firms

cannot adjust their investment decisions. However, some policies may be able to react to shocks on

this shorter timescale. We will analyze policies in both horizons, beginning with the medium run

investment decision.

8.2.1. Marginal interventions on investment incentives. Suppose investment in link strength is sub-

sidized to reduce the marginal cost of investments, making the cost of a given investment 1 − θ
times its original cost. More precisely, we make the gross profit equal to

Πif = P (xif ;x)︸ ︷︷ ︸
prob. functional

g(r)︸︷︷︸
gross profit
if functional

−
(

1− θ
κ

)
c(yif )

︸ ︷︷ ︸
cost of effort

.

Suppose the status quo were at a critical equilibrium with reliability r = r (see Figure 5(B) for

an illustration). A subsidy of this form will shift the red best response curve in Figure 5(B) to

the right. At the margin this will increase reliability, but have a very limited effect on equilibrium

investments for high values of τ . Thus the equilibrium will remain fragile. The same argument can

be used for increasing κ. This leads to the counterintutive conclusions that a policy intervention

that works well in terms of increasing reliability in normal times can still fail to remove fragility to

aggregate shocks.

Indeed, a similar analysis applies for many other interventions that shift the best response curve

to the right—including, for example, improvements in institutions that increase x marginally.

8.2.2. Larger interventions to improve investment. While marginal interventions typically fail to

resolve fragility, non-marginal interventions might work, for the reasons apparent in the earlier

discussion (see also Figure 5(B)). They can shift the equilibrium into the non-fragile regime from

the fragile one. The kinds of policies that would work here would be substantial subsidies to

investments in reliability strength or actions that increase profitability in an industry. This could

be done in a variety ways: large tax exemptions might be granted or competition might be limited

by, for example, improved patent protections.

Such interventions have the flavor of “big push” policies advocated for developing counties to

escape poverty traps, but are different in a few ways from the standard analysis (Murphy et al.,

1989).41 The standard theory underlying a “big push” approach is one of multiple equilibria: there

is a low-output equilibrium with traditional production where demand is low and traditional tech-

nologies are more cost-effective, and a high-output equilibrium with industrialized production where

demand is high and industrial technologies are more cost-effective. For an economy to grow out

of the bad equilibrium, it must do so in a balanced way to take advantage of one sector’s growth

fueling other sectors’ demands, beyond external economies of scale that are confined in a given

industry (Rosenstein-Rodan, 1943). A temporary intervention that subsidizes industrial technol-

ogy can facilitate this shift. Crucially, the good equilibrium is sustained by increased production

41See also Okuno-Fujiwara (1988) and Rodrik (1996).
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under the same institutions. Once a temporary intervention is removed, the technology and other

economic primitives remain unchanged: in particular, there is no long-term government support of

production, and no institutional changes.

In our analysis we select undominated equilibria and so there is no scope for policies to facilitate

coordination on better equilibria. However, without this selection temporary interventions could

shift an economy out of a bad equilibrium and into a good one, just as in “big push” theories.

Nevertheless, in the fragile regime which is our main focus, all of the productive equilibria involve

fragility, and so no temporary policy can remove it. To resolve fragility, permanent intervention

on costs or production technologies is necessary.42 To summarize, the comparison to classic big-

push models is interesting: we also find an important role for non-marginal interventions, but for

different reasons and with different implications for policy.

8.2.3. Targeting interventions. Our analysis offers some tentative suggestions for how interventions

should be targeted to best address fragility. For targeting questions to make sense, there must be

some heterogeneity across the economy. One type of heterogeneity was introduced in the extension

of Section 6.3.1 with partial knowledge of depth. We first consider interventions that will take a

supply network out of the fragile regime in the environment presented there. In any productive

equilibrium, the equilibrium reliability of the low-depth firms does not affect the limit reliability of

the high-depth firms. Hence further improvements in reliability for the low-depth firms will have no

impact on the reliability of high-depth firms as their depth gets large. On the other hand, targeting

the high-depth firms for non-marginal interventions such as those discussed above may be able to

move the supply network out of the fragile regime.

This relates to the issue of reshoring—bringing production that had been outsourced to offshore

suppliers back into a rich country. The rationale for reshoring through the lens of the model is as

follows. Links involving long-distance shipping to different countries are more prone to disruption

and may occur under weaker institutions. Reshoring can therefore be modeled as improving the

strength of relationships among those firms involved, or improving the technology for investing in

those relationships. The analysis in the previous paragraph suggests that if reshoring targets parts

of the supply network that are of low depth (and known to be so by the participating firms), the

impact is likely be relatively limited. Reshoring high-depth, complex, products, on the other hand,

can be quite effective.

Targeting can also be considered in the model of Section 6.3.2 with richer heterogeneity in the

production structure. There we showed that there is generally a “weakest link” phenomenon in

which all firms downstream of an industry that is fragile are also fragile (Proposition 5). Thus,

policymakers should be especially interested in identifying upstream, or central, complex industries

in a critical equilibrium. We would expect the industries at risk to be ones with relatively low

profit margins and relatively few sourcing options per firm. Beyond these guidelines, a diagnostic

indication of being in or near a critical equilibrium is that reliability is very sensitive to changes in

κ (e.g., changes in profitability). Critical industries also have the property that changes in κ are

incident only on ρ in equilibrium (as discussed above).

42It may be that a more productive economy is capable of supporting institutional reforms or innovation that, for
example, change κ. This is a multiple equilibrium story in a larger model, but is still markedly different from the
classic big push story as described above.
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8.2.4. Reactive interventions: The short run. As discussed in Section 5.2.2, the extreme effects of

fragility occur in the short run (without giving firms a chance to adjust their investment decisions).

Thus, there is a case for quick, reactive short-term government intervention, if such interventions can

directly address an aggregate shock. For example, suppose shipping is constrained by regulations

that limit the throughput of ports, or short-term shortages of labor in the transport industry.

These problems can be modeled as reducing the probability of supply relationships throughout an

economy operating normally. Our analysis shows that this can lead to cascading disruptions and

production freezes when supply networks are fragile. However, if the government is able to quickly

counteract these shocks—e.g., relaxing regulations, or mobilizing military personnel to compensate

for the short-term labor shortage—then that can be effective. Moreover, firms’ anticipation of such

reactions does not significantly change their investment incentives, as long as shocks are fairly rare.

(The reasoning here is analogous to that in Section 6.2.2.) Thus, there is no concern of crowding

out those incentives. So, perhaps counterintuitively, reactive interventions like this can be more

effective in avoiding fragility than more forward-looking policies that seek permanent improvements

in reliability (as discussed above).

8.3. Embedding precipices in a macroeconomic model: Aggregate volatility. So far we

have focused on a single complex supply network with particular parameters, interconnected by

specific-sourcing relationships. The larger economy can be thought of as consisting of many such

supply networks, each one small relative to the economy. Our question in this section is what the

fragility of some of these particular supply networks implies for the reaction of the entire economy

to shocks. Our main finding is that while the severe amplification of shocks remains, the conclusion

is nuanced by embedding individual supply networks in a richer setting.

Suppose there are many supply networks operating independently of each other, with heterogene-

ity across supply networks but, for simplicity, homogeneity within each network. The parameters

of these different supply networks, including their complexities m and multisourcing numbers n are

drawn from a distribution. We know from the above that a small shock to relationship strength can

discontinuously reduce the production of some of these supply networks. We now point out that a

small shock can have a large macroeconomic effect, and that the structure of the fragile regime is

essential for this.

For simplicity, fix the function c(·) to be the same throughout the economy.43 A given supply

network is then described by a tuple s = (m,n, κ). We consider the space of these networks induced

by letting the parameters m,n and κ vary. In particular, we let M be the set of possible values

of m, the set of integers between 1 and M ; we let N be the set of possible values of n, integers

between 1 and N , and we allow κ ∈ K = [0,K]. The space of possible supply networks is now

S =M×N ×K. We let Ψ be a distribution over this space, and assume that it has full support.

In some supply networks there will not exist an equilibrium with positive production, which we

henceforth call a productive equilibrium (for example, when κ is sufficiently low fixing the other

parameters). Consider now those supply networks for which there is a productive equilibrium.

There are two possibilities. It may be that the only supply networks for which there is a positive

43This could also be drawn from a distribution, but the notation would be more cumbersome.
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equilibrium have m = 1.44 That is, the only supply networks with positive reliability are simple.

In this case, there is no aggregate fragility.

But if, in contrast, S contains supply networks where production is not simple, then we will have

macroeconomic fragility. Indeed, an immediate consequence of Theorem 1 is that if there are some

complex (m ≥ 2) supply networks with positive equilibria, then some of the lower-κ networks with

the same (n,m)—which are included in S—are in the fragile regime. The measure that Ψ assigns

to supply networks in the fragile regime is positive. Thus, a shock to relationship strengths will

cause a discontinuous drop in expected aggregate output. On the other hand, in contrast to the

situation with a single supply network, the reduction in output need not be all the way down to

zero: it will be a discontinuous loss of some fraction of the output.

So far we have looked at the case in which the different supply networks operate independently

and all business-to-business transactions occur through supply relationships confined to their re-

spective supply networks. As we have emphasized, such specific relationships correspond to inputs

tailored to the specifications of the business purchasing them. They are not products that can be

purchased off-the-shelf. However, many other inputs are sourced in different ways. For example,

most business use computers, and buy them off-the-shelf rather than through the specific-sourcing

relationships we have focused on. So far we have abstracted from any interdependencies between

businesses created by such arm’s-length purchases. However, these interdependencies might mat-

ter. If a small aggregate shock causes the collapse of some supply networks, the inputs available to

other supply networks that managed to remain functional become scarcer and more costly. This

effectively damages the productivity of these other supply networks, and when they reoptimize,

some of them that were not previously on a precipice will now find themselves there. Thus, they

will be sensitive to further aggregate shocks. The key is that being on the precipice is not a fixed at-

tribute of a supply network’s structure, but in fact dependent on its productivity. Thus, even with

market-mediated spillovers, the productivity damage of collapses leads to domino effects where,

iteratively, previously robust parts of the economy become fragile.45

8.4. Some implications for industrial development. The comparison between the production

of complex and simple products developed in Section 6.1.1 has interesting implications for the

complexity of technologies used across countries, and for industrial development. While a full

analysis of this is beyond the scope of this paper, Figure 9 illustrates the main point. We posit that

the revenue of a product is the associated level of production reliability multiplied by the value of

the product, which is higher for more complex products. We then plot the two revenue curves, one

derived from complex products (Figure 3) and one for simple products (Figure 6.1.1(a)). Small

increases in quality of commercial institutions can make more complex production technologies

viable and yield discontinuous benefits to an industry by enabling a transition from simple to

complex production.

Even this very rudimentary theory of development and industrialization fits a number of stylized

facts: (i) Industrialization, when it occurs, is rapid and economic output increases dramatically. (ii)

At the same time, the share of the value of total production that can be attributed to intermediate

44For example, it might be that M = 1 so that only simple production is feasible, or K might be sufficiently low that
only simple production has a positive probability of being successful.
45In Appendix SA3 we provide a numerical illustration of this phenomenon.
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m=2

Relationship strength (s)

Expected 
Revenues

10

m=1

Figure 9. A contrast of the m = 1 and m = 2 cases with the degree of multisourcing being held at
n = 2. Expected revenues are on the vertical axis. This is a product of the probability of successful
production and price of goods. The case in which the complex good retails for a price of 1 while
the simple good retails for a price of 1/4 is illustrated.

inputs increases quickly (Chenery, Robinson, and Syrquin, 1986). (iii) The quality of institutions,

and particularly those related to contracting, can help explain what kinds of production different

economies can support (Nunn, 2007) and hence cross-country differences in development (Acemoglu

and Johnson, 2005), wages and productivities (Jones, 2011). (iv) Finally, more complex supply

chains are associated with higher rates of disruption (Craighead, Blackhurst, Rungtusanatham,

and Handfield, 2007).46

A full study of these issues obviously requires more detailed modeling. Nevertheless the discon-

tinuities we identify may have a useful role to play in theories relating the quality of institutions

and an economy’s production possibilities.
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Appendix A. Formal construction of the supply network

We now formally construct the random supply network which was introduced in Sections 2.1 and 2.2; this
construction provides the foundation for calculating the set of functional firms, etc.

Endow each Vi with the Borel σ-algebra and a scaling of Lebesge measure, denoted λ, and let V be the
disjoint union of these spaces, with total measure 1. Fix positive integers m and n, as well as a distribution µ
over the nonnegative integers. A (symmetric) potential supply network with parameters m, n, µ is a random
graph G = (V, E) satisfying the following properties.

• Its nodes are the set V.
• Edges are ordered pairs (v, v′) where v′ = (j, f ′) for j ∈ I(i)—the meaning is that v can potentially

source from v′. We depict such an edge as an arrow from v to v′.
• The measure of nodes v with d(v) = d′ is µ(d′).
• Consider any v ∈ Vi with d(v) > 0.

– For each j ∈ I(i) there are n edges (v, v′) to n distinct varieties v′ ∈ Vj . For any variety, define
its neighborhood Nv = {v′ : (v, v′) ∈ E}.

– The elements of Nv ∩ Vj are independently drawn from an atomless distribution over Vj con-
ditioned on d(v′) = d(v)− 1.

– For any countable set of varieties V̂, its neighborhoods (Nv)v∈V̂ are independent.

Now fix relationship strengths (xv)v∈V .47 Define G′ to be a random subgraph of G in which each edge
from a node v of positive depth is kept independently, with probability xv. More formally, define for every
edge vv′ a random variable Ovv′ ∈ {0, 1} (whether the edge is operational) such that

• P[Ovv′ = 1 | G] = xv for every vv′ ∈ G and,
• for any countable subset E of edges in G, the random variables (Oe)e∈E are independent conditional

on G.

The out-neighborhood of the depth-0 varieties in G′ is
⋃
j∈I(i) Vj , since these can source from anyone.

A subset V̂ ⊆ V is defined to be consistent if, for each v ∈ V̂ the following holds: for each product j that

v = (i, f) requires as inputs (∀ j ∈ I(i)), there is an operational edge (v, v′) ∈ G′) with v′ ∈ V̂. There may
be many consistent sets, but by Tarki’s theorem, there will be a maximal one, V ′, which is a superset of any
other consistent set. For any given variety, this can be found by the simple iterative procedure in Section
2.3.

Since any countable set of edges is independent, we can make computations about the relevant marginal
probabilities in our model (e.g., reliability of any variety) as we would if there only one tree.

Appendix B. Proofs of main results

B.1. The reliability curve: Basic precipice results. The first building block of our analysis is char-
acterizing the shape of the reliability curve x 7→ ρ(x, µτ ) when τ is large (so that depths are large). In
Figure 10, we reproduce Figure 3 (adding one additional panel), which will help us describe what we are
doing. First, we define a correspondence that will be central to our analysis. It is a limit of the functions
x 7→ ρ(x, µτ ), in the sense that their graphs converge to the graph of the correspondence ρ(x) as τ → ∞
(see panels (A) and (B)). More formally:

Definition 5. Let ρ : [0, 1] ⇒ [0, 1] be a correspondence such that48

(i) for any r ∈ ρ(x), there is a sequence {xτ}∞τ=1 → x such that limτ→∞ ρ(xτ , µτ ) = r;

47Here v 7→ xv is a given measurable function.
48Equivalently, we can define ρ by saying that it is a correspondence such that the graphs of the functions ρ(·, µτ ) :
[0, 1]→ [0, 1] converge to the graph of ρ (in the Hausdorff set-distance metric).
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Figure 10. Panel (A) shows how reliability varies with the investment level x when supply chains
have a finite depth. Panel (B) shows the limit correspondence of the relationships between reliability
r and the investment level x as the depth gets large. Panel (C) shows how reliability varies with
the investment level x for infinite depth.

(ii) for any sequence {xτ}∞τ=1 → x we have limτ→∞ ρ(xτ , µτ ) ∈ ρ(x).

We will show that this limit correspondence ρ exists and is uniquely defined, and that it has the shape
sketched in panel (B): zero until some point, with a vertical rise up to a certain critical level of reliability,
followed by a concave ascent to reliability 1 at x = 1. With these results in hand, this subsection will
culminate in the proofs of Proposition 1 and Proposition 2.

Our main result on the reliability correspondence is:

Proposition 6 (Shape of the limit reliability correspondence ρ). Let the complexity of production be m ≥ 2
and the number of potential suppliers for each input be n ≥ 2. Then there is a unique ρ satisfying Definition
5, and it has the following properties. There exists an xcrit ∈ (0, 1) such that

(i) ρ(x) is single-valued for all x 6= xcrit;
(ii) ρ(x) = 0 for all x < xcrit;

(iii) there is a value 0 < rcrit < 1 such that ρ(xcrit) = [0, rcrit];
(iv) ρ(x) is strictly increasing in x for all x > xcrit;
(v) limx↓xcrit ρ

′(x) =∞.

Sections B.1.1 and B.1.2 are devoted to proving this result. A closely related (discontinuous) function,
sketched in panel (c), will play a role in this analysis, as we describe next. Once this is done, we will deduce
Propositions 1 and 2.

B.1.1. The reliability function with infinite depth: A tool to study ρ. In order to prove Proposition 6 it is
helpful to define and characterize some properties of a certain function ρ̂ : [0, 1]→ [0, 1], sketched in Figure
10(C). It will turn out that for all x 6= xcrit, ρ(x) = ρ̂(x). We define ρ̂(x) as the largest r solving the following
equation

r̂ = (1− (1− xr̂)n)m. (6)

(For intuition, note that this is equation (2), which relates reliability at depths d and d − 1, but here with
the same reliability r on both sides. This is an intuitive condition “at depth infinity” as reliability is not
decreased by adding one layer of depth.)

Lemma 2, which is proved in Section SA1.1 of the Supplementary Appendix, identifies several key prop-
erties of ρ̂(x).

Lemma 2. Suppose the complexity of the supply network is m ≥ 2 and there are n ≥ 1 potential input
suppliers of each firm. For r ∈ (0, 1] define

χ(r) :=
1−

(
1− r 1

m

) 1
n

r
. (7)

Then there are values xcrit, rcrit ∈ (0, 1] such that:
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(i) ρ̂(x) = 0 for all x < xcrit;
(ii) ρ̂ has a (unique) point of discontinuity at xcrit;

(iii) ρ̂ is strictly increasing for x ≥ xcrit;
(iv) the inverse of ρ̂ on the domain x ∈ [xcrit, 1], is given by χ on the domain [rcrit, 1], where rcrit =

ρ̂(xcrit);
(v) χ is positive and quasiconvex on the domain (0, 1];
(vi) χ′(rcrit) = 0.

The proof of Lemma 2 is in Section SA1.1 of the Supplementary Appendix. While the manipulations to
establish these properties are a bit involved, they amount to studying the function ρ̂ and the pseudo-inverse
of it that we have defined, χ, using calculus. Figure 11(a) depicts χ as a function of r.49

(a) (b)

Figure 11. Panel (A) plots the function χ as r varies, and then in Panel (B) we show how switching
the axes and taking the largest r value on the graph (corresponding to the largest solution of
equation (6)) generates ρ̂(x).

Recall the functions ρ̃(x, d): consider a depth-d tree where each firm in each tier requires m kinds of inputs
and has n potential suppliers of each input. We denote by ρ̃(x, d) the probability of successful production
at the most-downstream node of a depth-d tree with these properties. This is defined as

ρ̃(x, d) = (1− (1− xρ̃(x, d− 1))n)m

with ρ̃(x, 0) = 1, since the most-upstream tier nodes obtain their inputs without the possibility of disruption.
It will be useful throughout that ρ̃(x, d) and its derivative converge uniformly to the function ρ̂(x) every-

where except near xcrit. Indeed, this will direclty imply that reliability curve and the marginal returns to
investment in our model also converge (at all points but xcrit) to their corresponding values in the “infinite-
depth” model that defines ρ̂. The following lemma formalizes these statements.

Lemma 3.

(i) For all d ≥ 1, the function x 7→ ρ̃(x, d) defined for x ∈ (0, 1) is strictly increasing and infinitely
differentiable.

(ii) On any compact set excluding xcrit, the sequence (ρ̃(x, d))∞d=1 converges uniformly to ρ̂(x).
(iii) On any compact set excluding xcrit, the sequence (ρ(x, µτ ))∞τ=1 converges uniformly to ρ̂(x).

Proof. The sequence (ρ̃(·, d))∞d=1 is a monotone sequence of increasing, infinitely differentiable functions,50

converging pointwise to ρ̂. We know that ρ̂ is continuous on any compact set excluding xcrit. Therefore, by
Dini’s theorem, the functions ρ̃(·, d) converge uniformly to ρ̂.

49Since by definition the largest r satisfying (6) is the one that determines ρ̂(x), it follows that the increasing part of
the function, where r ∈ [rcrit, 1] is the part relevant for determining equilibrium reliability—see Figure 11(b), where
the light gray branch is not part of ρ̂.
50From eq. (2), it is clear that increasing d decreases ρ̃(x, d), while increasing x increases it. Differentiability is
straightforward from the iterative definition.
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Note the functions ρ(·, µτ ) are strictly increasing and infinitely differentiable, since they are the averages
of such functions. Moreover, they clearly converge pointwise to ρ̂(x): since all the ρ̂(·, d) are uniformly
bounded, the vanishing probability mass on low-d realizations makes only a negligible contribution to the
value of ρ(x, µτ ) for large τ . From this the conclusions of Lemma 3 apply equally well to the sequence of
functions (ρ(·, µτ ))∞τ=1. �

B.1.2. Proof of Proposition 6. We will now establish a close relationship between ρ̂ and our correspondence
of interest, ρ, which will allow us to use Lemmas 2 and 3 to prove Proposition 6.

Define ρ(x) = {ρ̂(x)} for x 6= xcrit. By Lemma 3(iii) ρ(x, µτ ) → ρ̂(x) as τ → ∞ for any x 6= xcrit. Thus
Part (ii) of Definition 5 is satisfied. Since ρ(x) is single-valued for x 6= xcrit, Part (i) of Definition 5 also
holds. Lemma 2 then implies points (i), (ii), (iv) and (v) of Proposition 6.

Next, define ρ(xcrit) = [0, rcrit]. We will show that the remaining conditions of Definition 5 (those
pertaining to xcrit) also hold. First, we will check Part (i) of Definition 5 for r ∈ ρ(xcrit). For any r ∈ [0, rcrit],
we can construct a sequence {xτ}∞τ=1 → xcrit such that limτ→∞ ρ(xτ , µτ ) = r. To see this, simply note that
for any r ∈ (0, rcrit] and any τ , there is an xτ such that ρ(xτ , µτ ) = r since ρ(x, µτ ) is a continuous and
increasing function of x whose image is [0, 1]. Moreover, since for any x < xcrit, limτ→∞ ρ(x, µτ ) = 0 and for
any x > xcrit there exists ε > 0 such that limτ→∞ ρ(x, µτ ) = rcrit + ε, it follows that these xτ must indeed
converge to xcrit. In the case of r = 0, there exists a sequence {xτ}∞τ=1 → xcrit such that ρ(xτ , µτ ) ↓ 0 since
for any x < xcrit, ρ(x, µτ ) ↓ 0.

Finally, we show that every sequence {xτ}∞τ=1 → xcrit satisfies limτ→∞ ρ(xτ , µτ ) ∈ [0, rcrit] (Part (ii) of
Definition 5). This amounts to showing that the limit is at most rcrit. Suppose otherwise, that such a limit
is r′ > rcrit. Let x′ be such that ρ̂(x′) = r′, which exists by Lemma 2. Note for all xτ < x′, we have
ρ̂(xτ ) < r′ − ε for some positive ε, and so ρ(xτ , µτ ) < r′ for sufficiently large τ ; this is a contradiction to the
hypothesis about the limit being r′.

These claims together establish the remaining content of the claim that the ρ we have defined is the limit
satisfying Definition 5. That implies part (iii) of Proposition 6. �

B.1.3. Proof of Proposition 1 (Discontinuity in reliability) using the limit reliability correspondence. We can
now use the results established to prove the proposition about the precipice.

Part (i): The fact that ρ(x, µτ )→ 0 for x < xcrit follows from Definition 5 and Proposition 6(ii).
Part (ii): From Proposition 6(iii) and (iv), it follows that ρ(x) > rcrit for any x > xcrit and thus, for τ

large enough, ρ(x, µτ ) > rcrit > 0. �

B.2. Proof of Proposition 2 (Social planner’s solution). Now we can use the properties of the relia-
bility curve to prove our result on the social planner’s solution. Recall that xSP (κ, µτ ) is the set of all values
of x maximizing the planner’s objective.

First consider the following “limit” planner’s problem, defined for x ∈ [0, 1]:

max

[
h(r)− 1

κ
cP (x)

]
subject to r ∈ ρ(x). (8)

We claim that, if δ > 0 is chosen small enough, then any solution has x /∈ [xcrit − δ, xcrit + δ]. To rule out
solutions with x ∈ [xcrit − δ, xcrit), note that by Property B and continuity of cP that the cost cP (x) is
positive in that interval (if δ is fixed at a small enough value) while ρ(x) is zero by Proposition 1, so that
x = r = 0 does better. To rule out solutions with x ∈ [xcrit, xcrit + δ], first observe that for x = xcrit, the
only r that can be a solution is r = rcrit, so we may assume the solution lies on the graph of ρ̂. Next, note
that if δ is chosen small enough, then for any κ, we have ρ̂′(x) > 1

κcP (x) in the interval [xcrit, xcrit + δ] since
ρ̂′(x) tends to +∞ as x ↓ xcrit by Lemma 3.

Let κcrit > 0 be the minimum value of κ such that that (8) has a solution with r > 0. This κcrit exists
because for large enough κ we have that the maximand is positive at x = xcrit, and so there must be a solution
with positive r; similarly, κcrit is positive since for small κ, the maximand is negative for all x ≥ xcrit.51 By
the previous paragraph, any solution at κ = κcrit satisfies x > xcrit. Since in the domain x > xcrit, we have
that ρ(x) is concave while cP is convex, for κ ≥ κcrit there is a unique, strictly positive solution (x(κ), r(κ))

51Since cP (xcrit) > 0 and cP is convex, cP (x) > 0 for all x ≥ xcrit. Thus by making κ small enough, the costs
exceed the bounded benefits. We can say “minimum” rather than “infimum” in the definition of κcrit because the
correspondence ρ is continuous, as is cP .
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of (8) and both x and r are increasing in κ. For κ < κcrit, we have that ρ(x) = 0 at the optimum and hence
cost is zero (otherwise r = x = 0 would do better). Thus, by what we have said above,

(i) for all κ < κcrit, all solutions of (8) have x ≤ xcrit − δ, have cost equal to 0, and yield reliability 0;
(ii) for all κ > κcrit, all solutions of (8) have x ≥ xcrit + δ and yield reliability r ≥ rcrit;

(iii) for κ = κcrit, all solutions of (8) are outside the interval [xcrit − δ, xcrit + δ] and reliability is either
0 or strictly above rcrit.

Returning to the main model rather than the limit case above: for any κ and τ , consider the following
rewriting of the planner’s problem:

max

[
h(r)− 1

κ
cP (x)

]
subject to r = ρ(x;µτ ). (9)

For any κ, it is straightforward to deduce from the definition of the correspondence ρ that a sequence of
solutions (x(τ), ρ(x;µτ )) of (9) must converge to a solution of (8) as τ →∞.52 Thus, choosing ε small enough
and using the convergence of ρ(x;µτ ) to ρ(x) per Definition 5 (along with the properties of ρ established in
Proposition 1), the conclusions of the present proposition follow. �

B.3. Best responses and equilibrium behavior: Oveview and preliminaries. Our goal now is to
work toward Theorem 1 on the ordered regimes and the properties of equilibrium.

For notational convenience, when analyzing equilibria, we will multiply through all firms’ profit functions
by κ, so that a firm’s cost is c(xif−x) and its gross profit is κg(r)P (xif ; r). Note this does not change any best
responses. We maintain this convention throughout the remainder of the proofs, and in the Supplementary
Appendix.

In Figure 12, we reproduce part of Figure 5, which will guide our analysis. Before beginning, we outline
the plan. At a high level, it amounts to bringing the best-response curve into the picture along with the
precipice graph, and ultimately formalizing the graphical intuitions in Figure 12 concerning what happens
to the best-response curve as κ moves around. Throughout, a recurring strategy is to prove a result for the
game “at the τ = ∞” limit (in a sense we make precise), and then extend the conclusion to large values of
τ , where most of the mass is on deep supply trees.

To study this τ =∞ limit, we establish some notation. First, define

P̂ (xif ; r) = (1− (1− xifr)n)m. (10)

This is the probability with which if is able to produce, as a function of its investment choice xif given that
all its suppliers have reliability r. This is simpler than our finite-τ problem because all firms are exactly
symmetric (which is only approximately true when τ is large but finite).

Define

MB(xif ; r, κ) = κg(r)
∂P̂ (xif ; r)

∂xif
(11)

MC(xif ) = c′(xif − x). (12)

These are the marginal benefit and marginal cost, respectively, to a firm of investing in relationship strength
for the supply network “at the limit.”

A first step in the analysis is making best responses at τ = ∞ tractable by expressing them as the
solution to a first-order condition equating marginal benefits and marginal costs, which is unique under
suitable assumptions. This is done in Section B.3.1. Second, we show in Section B.3.2 that if we are
interested in equilibria that are undominated in terms of social surplus, we may focus on the higher points
of intersection in Figure 12. Third, we show in Section B.3.3 that in the limit model, there is a unique
intersection between the two curves above reliability rcrit, as in Figure 12(d), with the best-response curve
sloping down in r, which makes the comparative statics work as in the sketches.

Together, these ingredients set up the proof of Theorem 1 in Section B.4, allowing us to formalize the
graphical intuition. The remaining subsections carry out this plan.

B.3.1. Proof of Lemma 1 (Sufficient condition for unique interior local maximum of the firm’s objective).
We first study the firm’s problem “at τ = ∞.” Afterward, we establish that the same uniqueness property
holds for large, finite τ .

52This is a version of the Theorem of the Maximum on upper hemicontinuity of optimization.
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Figure 12. Panel (A) shows an equilibrium for κ < κ. Panel (B) shows an equilibrium with κ = κ.
Panel (C) shows an equilibrium with κ = κ. Panel (D) shows an equilibrium with κ > κ. Panel (E)
plots how equilibrium reliability varies with κ. Panel (F) shows reliability following an arbitrarily
small negative shock to institutional quality x as κ varies.

For the extended domain xif ∈ [0, 1/r], we define

Q(xik; r) :=
∂

∂xif
P̂ (xif ; r), (13)

which can be calculated to be Q(xik; r) = mn(1− (1− xifr)n)m−1(1− xifr)n−1r.
We will need two steps to prove Lemma 1. The first step consists of establishing Lemma 4 on the basic

shape of Q(xif ; r). Figure 13 illustrates the shape of Q(xif ; r) implied by Lemma 4.

Lemma 4. Fix any m ≥ 2, n ≥ 2, and r ≥ rcrit. There are uniquely determined real numbers x1, x2
(depending on m,n, and x) such 0 ≤ x1 < x2 < 1/r and so that:

0. Q(0; r) = Q(1/r; r) = 0 and Q(xif ; r) > 0 for all xif ∈ (0, 1/r);
1. Q(xif ; r) is increasing and convex in xif on the interval [0, x1];
2. Q(xif ; r) is increasing and concave in xif on the interval (x1, x2];
3. Q(xif ; r) is decreasing in xif on the interval (x2, 1].
4. x1 < xcrit.

The proof of Lemma 4 is in Section SA1.2 of the Supplementary Appendix.
We now complete the proof of Lemma 1 by setting x̂ = x1. By Lemma 4(4), the interval (x̂, xcrit) is

non-empty. Thus we just need to show that Assumption 1 (the sufficiency of the first-order condition for
interior optima) is satisfied when x ∈ (x̂, xcrit). Note that by Property B′, we have that c′(0) = 0 and
c′ is weakly increasing and weakly convex otherwise. Since, by Lemma 4, P ′(xif ;x) is first concave and
increasing (possibly for the empty interval) and then decreasing (possibly for the empty interval) over the
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Figure 13. The shape ofQ(xif , x) in green and c′(xif−x) in red. There can be only one intersection
between the two curves, which corresponds to the maximizer of Π(xif ; r). (Here we normalized
κg(r) = 1 for simplicity, but the illustration remains valid if the green cruve is scaled.)

range xif ∈ [x, 1], it follows that there is at most a single intersection between the curves P ′(xif ;x) and
c′(xif − x). This intersection corresponds to the first-order condition Q(xif ; r) = c′(xif − x), yielding the
unique maximizer of Π(xif ;x), as illustrated in Figure 13. If such an intersection not exist, yif = 0 is a local
and global maximizer of the profit function.

Now we study the quantities introduced above, but for finite a τ and show that when τ is large enough,
we still obtain a unique solution to the firm’s problem.

Recall that
P (xif ;x, µτ ) = µτ (0) +

∑

d

µτ (d)(1− (1− xif ρ̃(x, d− 1))n)m.

Define

Q(xif ;x, µτ ) =
∂

∂xif
P ′(xif ;x, µτ ) =

∑

d

µτ (d)mn(1−(1−xif ρ̃(x, d−1))n)m−1(1−xif ρ̃(x, d−1))n−1ρ̃(x, d−1).

Recall that for all x 6= xcrit we have

ρ̃(x, d)→d ρ̂(x) and ρ(x, µτ )→τ ρ̂(x).

It follows from this and the expression for Q(xif ;x, µτ ) above that

P (xif ;x, µτ )→τ P̂ (xif ; ρ̂(x)) and Q(xif ;x, µτ )→τ Q(xif ; ρ̂(x)).

It follows that marginal costs and marginal benefits in the τ →∞ limit are arbitrarily close to the functions
studied above. We then conclude that for τ large enough, there will also be at most a single intersection
between the curves Q(xif ;x, µτ ) and c′(xif − x) and thus the results stated in the limit also hold for τ large
enough. �

B.3.2. A lemma on symmetric undominated equilibria. This subsection establishes that the symmetric equi-
librium maximizing social surplus is the one with greatest relationship strengths x and highest reliability.
In other words, it is the higher intersection in Figure 12 when there are several. Normalizing κ = 1 without
loss of generality, recall our notation that at a symmetric equilibrium with reliability r, gross output is h(r)
and gross profits are g(r).

Lemma 5. Consider two symmetric equilibria with relationship strengths x1 < x2 and reliabilities r1 < r2.
Then h(r2)− cP (x2) > h(r1)− cP (x1). That is, the higher-investment equilibrium has the greater net social
surplus.

Proof. Let V (x) = h(ρ(x, µ)) − cP (x). We will first show that V is increasing at x = x2, and then use this
to deduce the conclusion.
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Consider an outcome with firm investments xV and a reliability of r. Note that the gross profit per
functional firm is g(r) so that the gross profit integrated across all firms (functional or nonfunctional) is

GP = rg(r).

We will write net social surplus as follows, and then split it up in to consumer and producer surplus:

V = h(r)−
∫

V
c(xv)dv

= [h(r)−GP] +

[
GP−

∫

V
c(xv)dv

]

= [h(r)− rg(r)]︸ ︷︷ ︸
CS

+ PrS .

Here we define total producer surplus, PrS as gross profits net of investment costs.
Now, it will be useful to have two different expressions for producer surplus, which are identically equal:

PrS1 = rg(r)−
∫

V
c(xv)dv (14)

PrS2 =

∫

V
[Πv(xv; r)− c(xv)]dv. (15)

Now make all the variables—xv’s and r’s—functions of a parameter t, according to xv = x+ t for small t,
and r is a function of the xv (and thus of t. We want to totally differentiate V in t. We claim the derivative
is positive. First consider

d

dt
CS =

d

dt
[h(r)− rg(r)] .

Now we turn to producer surplus. Here, we need to totally differentiate in t. The endogenous variables
are the continuum of xv’s and r:

d

dt
PrS =

dr

dt
· ∂
∂r

PrS +
dxv
dt

∫

V

∂

∂xv
PrS .

Now, the key idea of the argument is that we use the PrS1 expression for PrS in the first summand, and
the PrS2 expression for PrS in the second summand, which is legimiate since the expressions are identically
equal. The second expression evaluates to 0 because for a fixed v, we have

∂

∂xv
PrS2 =

∂

∂xv
[Πv(xv; r)− c(xv)],

which is 0 by the firm’s first-order condition.
Using V = CS + PrS and our calculations above,

dV

dt
=
dr

dt
h′(r) =

d

dx
ρ(x, µ)h′(ρ(x, µ)).

Both factors are clearly positive, so V is increasing in t.
Note that for x ≥ xcrit, we have that h is concave by Property A and increasing in x while cP (x) is convex,

so
h(ρ(x, µ))− cP (x)

is single-peaked. The above argument implies both equilibria are socially inefficient, and thus social surplus
is increasing in x at both of them. This combined with single-peakedness shows that the one with higher
relationship strength is more efficient. �

B.3.3. A limit uniqueness result for equilibria above rcrit. In this section we prove an important lemma that
will be used to ensure that the relationship strengths and reliability achieved at symmetric undominated
equilibria are uniquely determined. As before, we study the “τ = ∞” model as a stepping stone to our
large-τ results. Visually, the lemma establishes that there is at most one intersection in Figure 12 that lies
above rcrit.

To motivate the statement, consider the question: when can there be an equilibrium outcome with r ≥ rcrit
for the limit payoffs at τ = ∞? Recall the definitions of marginal benefits and marginal costs from (11)
and (12) above. Under Assumption 1, an interior firm optimum is characterized by the first order condition
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(recall equations (11) and (12) for the definitions)

MB(x; r, κ) = MC(x), (OI)

which we have labeled OI, for optimal investment. In addition, an outcome of the τ =∞ model also satisfies
r = ρ̂(x) for r ≥ rcrit: the reliability is the one induced by firms’ choices of relationship strengths. Recalling
the definition of χ from Lemma 2, this entails x = χ(r). Then we have the equation

MB(χ(r); r, κ) = MC(χ(r)).

We will show that (for some ε > 0) there is at most one solution (x, r) satisfying r ∈ [rcrit − ε, 1] and
x = χ(r) simultaneously. This implies that there is only one solution to the first-order conditions above rcrit,
and the fact that the necessary condition cannot hold even for slightly lower values of rcrit will be technically
useful later.

Lemma 6. Fix any n ≥ 2 and m ≥ 3. There exists ε > 0 such that the equation MB(χ(r); r, κ) = MC(χ(r))
has at most one solution r∗ in the range [rcrit − ε, 1].

Proof. In the following argument, we defer technical steps to lemmas, which are proved in the Supplementary
Appendix.

(a) (b)

Figure 14. Panel (A) shows the relationship between r and x implied by physical consistency.
Panel (B) plots the function b(r) discussed in the proof.

Define b(r) = MB(χ(r); r, κ) and c(r) = MC(χ(r)), so that we can simply study the equation

b(r) = c(r). (16)

We can calculate
MB(xif ; r, κ) = κg(r)rn(1− xifr)n−1m(1− (1− xifr)n)m−1. (17)

By plugging in x = χ(r) into (17), we may rewrite the equation of interest as

κg(r)mnr2−
1
m

(
1− r1/m

)1− 1
n

︸ ︷︷ ︸
b(r)

= c′
( 1−

(
1− r 1

m

) 1
n

r︸ ︷︷ ︸
x

−x
)
. (18)
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We wish to show that there is a range [rcrit − ε, 1] for which there is at most one solution to equation
(16).53 The right-hand side of the equation is increasing in r for r ∈ [rcrit, 1].54 If we could establish that
the left-hand side, which we call b(r), is decreasing in r, it would follow that there is at most a unique r
solving (18) for r ∈ [rcrit, 1]. Moreover, by the continuity of b(r) and c(r), it would follow immediately that
for some small ε > 0, there is also at most a single solution over the range [rcrit − ε, 1]. Unfortunately, b(r)
is not decreasing in r. However, we can show that it is decreasing in r for r ≥ rcrit, which is sufficient.55

Panel (B) of Figure 14 gives a representative depiction of b(r), reflecting that it is decreasing to the right of
r̃ (which is itself to the left of rcrit).

The following lemma will, once established, complete the proof.

Lemma 7. b is strictly decreasing on the domain [rcrit, 1).

To prove Lemma 7 we write b(r) as a product of two pieces, α(r) := κg(r) and

β(r) := mnr2−
1
m

(
1− r 1

m

)1− 1
n

.

Note that the function β(r) is positive for r ∈ (0, 1). We will show that it is also strictly decreasing on
[rcrit, 1). By assumption, g(r) is positive and strictly decreasing in its argument, so α(r) is also positive and
decreasing in r. Thus, because b is the product of two positive, strictly decreasing functions on [rcrit, 1),
it is also strictly decreasing on [rcrit, 1). It remains only to establish that β(r) is strictly decreasing on the
relevant domain. Two additional lemmas are helpful.

Lemma 8. The function β(r) is quasiconcave and has a maximum at r̂ :=
(

(2m−1)n
2mn−1

)m
.

Lemma 9. For all n ≥ 2 and m ≥ 3, we have that r̂ < rcrit.

Lemmas 8 and 9 are proved in Sections SA1.3 and SA1.4 of the Supplementary Appendix. Together these
show that β(r) is strictly increasing and then strictly decreasing in r for r ∈ (0, 1), with a turning point
in the interval (0, rcrit). Thus β(r) is strictly decreasing on the domain [rcrit, 1), the final piece required to
prove Lemma 7.

Thus, by the continuity of b(r) and c(r), it follows immediately that there exists ε > 0 such that there is
at most a single solution for r ∈ [rcrit − ε, 1]. This completes the proof of the lemma. �

B.4. Proof of Theorem 1 (Classification of regimes as κ varies). Having developed the key machinery
that we will use to analyze the comparative statics of equilibria, we can proceed to the main proof. We will
sometimes take x = 0 when this is immaterial to the arguments to keep notation uncluttered.

The proof relies mainly on analyzing the shape of the best-response correspondence: how it depends on
κ and the reliability level r.

Denote by BR(r, κ) the set of values xif maximizing

κg(r)P̂ (xif ; r)− c(xif − x). (19)

Recalling the definition (10), this has the interpretation of best-response relationship strengths in the infinite-
depth model. Let BR(r, κ) = max{x : x ∈ BR(r, κ)} be the maximal element of the set BR(r, κ). Anal-
ogously, let BR(r, κ, µτ ) = max{x : x ∈ BR(r, κ, µτ )}. This is the finite-τ analogue of the limit object we
have just defined.

Recall the optimal investment first-order condition (OI) in the limit model:

MB(x; r, κ) = MC(x), (OI)

where the definitions are in (11) and (12). We will be using it to study interior optima.
A first lemma in the proof of Theorem 1 is monotonicity of the best response curve in κ.

Lemma 10. BR(r, κ) is increasing in κ, and strictly so whenever BR(r, κ) > 0.

53We note that the functions on both sides of the equation are merely constructs for the proof. In particular, when
we sign their derivatives, these derivatives do not have an obvious economic meaning.
54This follows directly: χ is increasing on that domain and c′ is increasing by assumption. (see Panel (A) of Figure
14).
55We do this by showing that the global maximum of b(r) is achieved at a number r̃ that we can prove is smaller
than rcrit.
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Proof. Let xif = BR(r, κ) and suppose OI holds at the optimum. Suppose κ increases slightly. Then,
evaluated at xif , the left-hand side of OI increases and the right-hand side does not change as it does not
depend on κ. So marginal benefits exceed marginal costs at xif . Now consider increasing xif . By the
assumption that c′(x′)→∞ as x′ → 1 and the boundedness of marginal benefits, there is an x′ > x so that
marginal benefits are once again equal to marginal costs. Since the original best-response gave a nonnegative
payoff, so must x′ (since marginal benefits exceed marginal costs in moving from x to x′). By Assumption
1, the first-order condition is sufficient for a best-response.

On the other hand, if BR(r, κ) = 0 is a strict best response, then by continuity of the value function, it
remains so for a slightly higher κ. �

We continue with two lemmas on the best response correspondence. Thereafter, we will prove the three
claims of the theorem.

The first lemma concerns the local comparative statics of the intersection between the graph of r 7→
BR(r, κ) and the graph of ρ.

Lemma 11. Take any κ0. Consider any (x0, r0) satisfying

x = BR(r, κ) and r ∈ ρ(x) (20)

with x0 > xcrit at κ = κ0. Then there is a neighborhood around κ0 where (X(κ), R(κ)) is the unique pair
satisfying (20), and both X and R are strictly decreasing, continuous functions of κ.

Proof. Restrict attention to a neighborhood of (x0, r0) where x > xcrit and r > rcrit. Here ρ is the same as
ρ̂. Note that in the notation of Lemma 6, the the conditions (20) are equivalent to

b(r) = c(r) and x = χ(r).

The existence of continuous functions (X(κ), R(κ)) extending the solution locally follows by the implicit
function theorem applied to this equation. The solution R(κ) can be visualized as the horizontal coordinate
where the decreasing function b(r) in Figure 14(b) intersects the increasing function c′(χ(r) − x). As we
perturb κ upward, the curve b(r) moves up pointwise. Then R(κ), the coordinate of the intersection, is
increasing in κ. The statement about X(κ) follows because X is an increasing function of R(κ) in our
neighborhood of interest. �

The following lemma concerns the convergence of the maximal best-response function BR(r, κ, µτ ) in the
finite-τ model to the limit model.

Lemma 12. BR(r, κ, µτ ) converges pointwise to BR(r, κ) for any r.

Proof of Lemma 12. When it is nonzero, BR(r, κ, µτ ) = max{x : MB(x; r, κ, µτ ) = MC(x)} where

MB(x; r, κ, µτ ) = κg(r)mn(1− xr)n−1(1− (1− xr)n)m−1r
∞∑

d=1

µτ (d).

Suppose first (passing to a subsequence if necessary) we have a sequence where this these conditions hold.
Note that, since µτ puts mass at least 1− 1

τ on [τ,∞), it follows that
∑∞
d=1 µτ (d)→ 1 as τ →∞.

It follows that, as τ →∞, we have the following convergence uniformly:

MB(x; r, κ, µτ )→ κg(r)mn(1− xr)n−1(1− (1− xr)n)m−1r = MB(x; r, κ)

and thus that
BR(r, κ, µτ )→ BR(r, κ)

for any r.
When BR(r, κ, µτ ) is identically zero for each τ (again by passing to a subsequence if necessary), it

follows from uniform convergence of the firms’ value functions to their limit (19) that investing zero strictly
dominates any positive level in the limit problem as well. �

We now define some key quantities that will play a role in our proof of the theorem. It is straightforward
to see by inspection of the limit maximand (19) and condition (OI) that for any r ∈ (0, 1] and any x0 < 1 if
κ is large enough, all elements of BR(r, κ) satisfy x > x0. In particular, we can guarantee that they all lie
above xcrit. What we have said implies that there is an κ1 such that for κ > κ1 the graphs of BR(r, κ) and
the graph of ρ (both viewed as sets of points (x, r)) intersect above xcrit. On the other hand, at sufficiently
small κ, all elements of BR(r, κ) are bounded by a small number. Let κ > 0 be the smallest κ such the
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Figure 15. The curves BR(r, κ) and x = χ(r). If the two were tangent at r = rcrit at κ = κ,
then by perturbing to a slightly higher κ, we would obtain two intersections above r = rcrit − ε,
contradicting Lemma 6.

graph of BR(r, κ) intersects the graph of ρ at a nonzero value of x. What we have said implies that κ is a
finite, nonzero number.

Consider the two graphs just mentioned at κ = κ. Lemma 11 implies that any intersection of the two
graphs must be such that x ≤ xcrit (and thus r ≤ rcrit), since otherwise we could find an intersection at a
smaller value of κ. Thus, κ is such that BR(r, κ) just touches the correspondence ρ(x) at x = xcrit. Define
rcrit to be the point of intersection with the highest r, as depicted in Figure 12(c). By Assumption 1, we
may assume that locally, BR(r, κ) is exactly the set of solutions to (OI) as a function of r.56 If it were the
case that rcrit = rcrit, then r 7→ BR(r, κ) would be tangent to r 7→ χ(r) at r = rcrit, and by increasing κ
slightly we would obtain two intersections between the graphs above rcrit − ε a contradiction to Lemma 6.
Thus rcrit < rcrit.

We can now prove each part of Theorem 1.

Part (i): For any κ < κ, Since BR(0, κ) = 0, the only intersection between BR(r, κ) and ρ(x) is at
(x, r) = (0, 0).

Note that for any τ , ∂ρ(x,µτ )
∂xif

|xif=x=0 = 0 and BR(0, κ) = 0. Now, since we know ρ(x, µτ ) converges to

ρ(x) (Proposition 6) and BR(r, κ, µτ ) converges to BR(r, κ) (Lemma 12), it follows that when κ < κ, then
there exists τ such that for τ > τ , the curves BR(r, κ, µτ ) and ρ(x, µτ ) intersect only at a point (x, r) = (0, 0).

Part (ii): Now take any κ ≥ κ. Since BR(r, κ) ≥ BR(r, κ) for any r (with equality holding only when
κ = κ or possibly when BR(r, κ) = 0), it follows that there is at least one point of intersection between
BR(r, κ) and ρ(x). We select the one with the highest reliability r. If κ is close enough to κ, then this point
will be (xcrit, r) with r ∈ (rcrit, rcrit).

Since we know ρ(x, µτ ) converges to ρ(x) and BR(r, κ, µτ ) converges to BR(r, κ), it then follows that
for any ε > 0, there exists τ such that for τ > τ , BR(r, κ, µτ ) and ρ(x, µτ ) intersect at some point x ∈
[xcrit − ε, xcrit + ε] and r ∈ [rcrit − ε, rcrit + ε].

As κ keeps increasing, BR(r, κ) also increases and thus the point of intersection with the highest reliability
will reach (xcrit, rcrit) when κ reaches some value κ. Since we know ρ(x, µτ ) converges to ρ(x) and BR(r, κ, µτ )
converges to BR(r, κ), by the same argument as before, it then follows that for any ε > 0, there exists
τ such that for τ > τ , BR(r, κ, µτ ) and ρ(x, µτ ) intersect at some point x ∈ [xcrit − ε, xcrit + ε] and
r ∈ [rcrit − ε, rcrit + ε].

Part (iii): Finally, as κ increases beyond κ, BR(r, κ) keeps increasing and the point of intersection
between BR(r, κ) and ρ(x) with the highest reliability r will increase along the part of the ρ(x) curve for
which x > xcrit, by Lemma 11. At any such point, we also have r > rcrit.

Since ρ(x, µτ ) converges to ρ(x) and BR(r, κ, µτ ) converges to BR(r, κ), this also holds for any τ large
enough. This completes the proof. �

56If the best response is indifferent to zero investment, then this indifference can be broken by changing the cost
function slightly at inframarginal costs without affecting the equilibrium.
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B.4.1. Proof of Corollary 1 (Comparative statics in baseline institutional quality). We first consider the limit
model. Equilibria are given by the highest intersection of the reliability curve with the best response curve.
The reliability curve is constant as both κ and x change. The conditions for optimal investment that must
be satisfied in the equilibrium x∗′ := x∗(κ′, x) are that

MB(x∗′) =
1

κ′
c′(x∗′ − x).

It needs to be shown that there exists an x′ ∈ (x, x∗′) such that

MB(x∗′) =
1

κ
c′(x∗′ − x′).

Note that c′(x∗′ − x′) is continuous in x′ holding x∗′ fixed, with

1

κ
c′(0) = 0 <

1

κ′
c′(x∗′ − x) = MB(x∗′) and

1

κ
c′(x∗′ − x) >

1

κ′
c′(x∗′ − x) = MB(x∗′).

The result then follows from the intermediate value theorem.
The extension to the limit as τ →∞ is straightforward and analogous to other arguments. �

B.4.2. Proof of Proposition 3 (Equilibrium fragility). When κ ∈ [κ, κ]:
From Theorem 1, for any ε > 0, there exists τ such that for any τ > τ , x∗(µτ ) ∈ [xcrit− ε, xcrit + ε]. Thus

for a shock of size 2ε, the relationship strength after the shock is x− ε+ ξ∗(µτ ) ≤ xcrit − ε.
From Proposition 6, for any η > 0, there exists τ ′ such that for all τ > max{τ , τ ′}, ρ(x−ε+y∗(µτ ), µτ ) < η.
Thus, when κ ∈ [κ, κ] the equilibrium is fragile.
When κ > κ:
From Theorem 1, x∗(µτ ) converges to x∗ > xcrit as τ →∞. Thus, for any ε > 0, there may not exist a τ

such that x∗(µτ )− ε = x− ε+ y∗(µτ ) < xcrit for all τ > τ and from Proposition 6, for any η, there may not
exist a τ ′ such that ρ(x− ε+ y∗(µτ ), µτ ) < η for all τ > max{τ , τ ′}.

Thus, when κ > κ the equilibrium is robust. �

B.4.3. Proof of Proposition 4 (Fragility with partial knowledge of depth). It is helpful to first define and
analyze an adjusted baseline model, called the rA-baseline model. This model is identical to the baseline
model except that the reliability of depth 0 firms is replaced by the adjusted reliability rA < 1.

Reliability at depth d in this adjusted baseline model is Rdx(rA) (with Rd denoting applying the function
d times). This is less than reliability in the baseline model at depth d, given by Rdx(1) because the function
Rx is increasing. However, if rA ≥ rcrit from the baseline model, then in both cases reliability converges
from above to rcrit as depth increases:

lim
d→∞

Rdx(1) = lim
d→∞

Rdx(rA) = rcrit.

Thus, if rA ≥ rcrit, the proof of Theorem 1 and Proposition 3 go through for the rA-baseline model. In
particular, there is equilibrium fragility for the same parameters.

Now consider the case of rA < rcrit. We will split the proof into two cases according to the limit value
of x. If we have a sequence of equilibria with limit investment x ≤ xcrit, we can immediately see that the
reliability of high-depth firms cannot converge to any r > rcrit so the only possibilities are r = rcrit or r = 0.
Thus, any limit equilibrium with investment x > 0 must be fragile. Alternatively, if we have a sequence of
equilibria with limit investment x > xcrit then in the limit reliability must be greater than rcrit. (By Lemmas
3 and 12, the only feasible limit reliability less than rcrit is 0 and only the limit investment xcrit can yield
limit reliability rcrit.) Hence

lim
d→∞

Rdx(1) = lim
d→∞

Rdx(rA) > rcrit.

As such investments are not a limit equilibrium of the baseline model, they cannot be a limit equilibrium of
the rA-baseline model. Putting these cases together, we conclude that if x∗ > 0 then the equilibrium must
be fragile.

We now argue that in a equilibrium of the partial depth knowledge model the equilibrium behavior
of the high-depth firms must be the same as equilibrium behavior in the adjusted baseline model. In a
symmetric undominated equilibrium of the partial depth knowledge model the low-depth firms make the
same investment. Thus all low-type firms at depth dl have the same reliability. Denote this reliability r.
In such an equilibrium the high-depth firms take this reliability of the low-depth firms as given. Thus the
high-depth firm problem is identical to the problem facing firms in the adjusted baseline model, where we
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set rA = r and let depth d in the adjusted baseline model correspond to depth dl + d for the high-depth
firms in the partial depth knowledge model.

We thus conclude, by our analysis of the rA-adjusted baseline model, that in any symmetric undominated
equilibrium of the partial depth knowledge model if there is positive limit investment in equilibrium then
there is also equilibrium fragility, as claimed. �

Appendix C. Microfoundations

In this appendix we use a canonical production network model with monopolistic competition to micro-
found the functionality of firms, firms’ profit functions and the planner’s objective function—i.e., Properties
A, B, B′, and C. Our goal is to keep this part of the model standard, in order to put the focus on the
structure of the underlying supply network. The proofs in Appendix B above depend on the structure of
production only through the properties just mentioned.

We first study production after investment has occurred and a given realized supply network is in effect;
we then discuss the modeling of investment in a prior stage.

C.1. Production. In this subsection we provide a model of production that microfounds the functionality
of firms.

C.1.1. Intermediate and final versions of each variety. We let production of any variety v ∈ Vi be used in
one of two ways. First it can be transformed into an intermediate good version, which is usable only by
those varieties v′ such that v ∈ PSi(v′)—i.e., the varieties v′ for which v is a potential supplier. This can
be interpreted as a costless transformation made possible by the supply relationship with v′ that makes v
suitable for use by v′. Alternatively, v can be converted costlessly into a different, consumption good version,
denoted v. (As we will discuss later, this transformation technology is owned by a particular firm, which
earns rents from selling this differentiated consumption good.)

C.1.2. Quantities and production functions. Suppose v procures for its production zv,v′ units of the variety
v′ ∈ Sj(v). For a given required input j ∈ I(i), let zv,j be the total amount of j sourced by v, summing
across all of v’s suppliers for this input, and write zv for the vector of all these quantities associated with
variety v. Let `v be the amount of labor used by variety v. Labor is the only factor (i.e., unproduced good)
and it is inelastically supplied, with ` = 1 unit of it. The output of v is

φv = f(`v, zv) := (`v)
ε`
∏

j∈I(i)
(zv,j)

εz , (21)

where ε` + |I(i)|εz = 1 so that there are constant returns to scale. Thus, all varieties in any set Sj(v) are
perfect substitutes. Concerning substitutability across varieties, note that production is not possible if one
of the inputs cannot be sourced, but on the intensive margin different inputs are substitutable.57

Let qv be the quantity of v consumed. The household consumes aggregate gross production less in-
vestments in reliability which are paid for in the aggregated final goods. Aggregate gross production of a
consumption good is given by

Y =

(∫

V
(qv)

ηCdv

)1/ηC

, (22)

a demand aggregator with 1
2 < ηC < 1.58 YC of the consumption good is allocated to consumption, while YI

is allocated to investment. Household utility is YC . Given investments, efficiency corresponds to maximizing
Y .

57We view the assumption that all inputs must be sourced for successful production as mild. Indeed, Boehm, Flaaen,
and Pandalai-Nayar (2019) estimate, in the context of a supply network disruption event, a production function with
low elasticity of substitution, closer to Leontief than Cobb–Douglas.
58The same results would hold if we defined a suitable nested-CES aggregator, with categories of products of equal
measures being the nests. The upper bound on ηC ensures that the elasticity of substitution between varieties is
finite (so that variety is valuable), while the lower bound ensures that the equilibrium returns to increasing variety
are concave, which is technically convenient; see the discussion after Definition 1.
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C.1.3. Functionality. Equation (21) implies that variety v ∈ Vi is able to produce if and only if it can procure
quantities (zv,v′)v,v′∈V from its suppliers such that zv,j > 0 for all j ∈ I(i). This will be possible if and only
if it has at least one link in the realized supply network to a functional supplier for each input it requires—in
other words, if and only if it is functional (as defined in Section 2.3). Note that depth-zero nodes have
the same production functions as any other nodes; the only difference is that they are not reliant on the
operation of specific supply relationships, and always have a functional firm to source their inputs from.

C.2. Equilibrium on a realized supply network. We now define a competitive equilibrium and study
its structure on a realized supply network. Given a realized supply network, functional firms choose how
much of each variety of each input to source (taking prices as given) and what price to set for its consumer
good, while the representative consumer supplies a unit of labor inelastically and chooses how much of each
consumer good variety to buy (taking prices as given). We start by considering the consumer’s problem, and
then consider firms’ problems before using these to define an equilibrium.

C.2.1. Equilibrium: Definitions. Let w denote the wage; pv the price of variety v when used as an interme-
diate; and pv the price paid by the consumer for the final good corresponding to variety v. The numeraire
is the price paid by the consumer for the final output.

As YI , the amount of final good devoted to investment, is sunk at the production stage, the household’s
problem is equivalent to choosing final good consumptions (qv)v to maximize equation (22) subject to the
budget constraint ∫

V
pvqvdv ≤ w +

∫

V
Πvdv, (23)

where the right hand side is labor income from the consumer’s inelastically supplied unit of labor at wage w
and income from the profits Πv of all firms (including those firms that are not functional). Let q∗(p) denote
the unique input bundle maximizing final good production, where p is a vector of the final good prices set by
different varieties, and let q∗v(p) denote the corresponding amount of variety v demanded in the production
of the final good.

Each firm takes the prices of all intermediate goods as given, as well as the final good prices of other
varieties. Prices for intermediate goods are competitive, i.e., equal to marginal costs of production.59

Our model is one of monopolistic competition in final goods: a functional firm’s problem is to choose input
quantities (zv,v′)v,v′∈V from its functional suppliers in the realized supply network, labor demand `v and a
price for its consumer good v to maximize its profits.60 We use efficient pricing for interfirm transactions to
focus on inefficiencies coming from network investment, rather than multiple-marginalization issues studied
elsewhere, but a model of this form could accommodate wedges in the interfirm prices if desired.

It is convenient to break this problem into two steps. First, for any quantity a firm produces it must
choose its inputs to minimize its cost of production. As there are constant returns to scale, this requires
choosing inputs to minimize the cost of producing one unit and then scaling these choices up or down to
meet the production target. Thus the relative amounts of different inputs and labor used must solve

min
zv,`v

∑

j

∑

v′∈Sj(v)
pv′zv,v′ + w`v subject to f(`v, zv) = 1 (24)

Let z∗v,v′ denote the quantity of variety v′ that v chooses to source per unit of its output, and `∗v the amount
of labor that v sources per unit of its output.

Given the unit cost of production generated by solving (24), each variety v sets a price for its consumer
good that maximizes its profits (taking reliability investment costs as sunk) and hence solves

max
pv

q∗v(p)[pv −
∑

v′

pv′z
∗
v,v′ − w`∗v] (25)

59Thus, the intermediate of variety v has a single price irrespective of who buys it. This pricing assumption amounts
to requiring efficient production, with no distortions even when a supplier has (in a given realization) market power
over a buyer. As documented by (Uzzi, 1997; Kirman and Vriend, 2000), avoiding hold-up is an important function
of relational contracts in practice.
60As in standard monopolistic competition models, a firm commits to a price pv for its consumption good v before
producing. These goods are sold at a markup above marginal cost; the quantity is determined by consumer demand
at that price. As there are constant returns to scale, the amount of intermediate goods produced has no bearing on
production costs for the final goods, and vice versa.
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Given a realized supply network G′ = (V, E ′), with functional firms V ′, a competitive equilibrium is given
by a specification of intermediate good production zv,v′ for all (v, v′) ∈ E ′, final good production qv for all
v ∈ V ′, wage w, intermediate good price pv for all v ∈ V ′ and final good price pv for all v ∈ V ′ such that the
following conditions hold:

• the household is choosing how much to consume of each consumer good variety given the prices of
these varieties to maximize its utility (22) subject to its budget constraint (23);
• all functional varieties v ∈ V ′ are choosing inputs in ratios that minimize their unit cost given input

prices (solve (24));
• all functional varieties v ∈ V ′ are choosing consumer good prices pv that maximize their profits given

other consumer good prices (solve (25));
• markets clear (φv =

∑
v′∈V′ zv,v′ + q∗v for all v ∈ V ′).

C.2.2. Equilibrium: Analysis. Equilibrium is characterized by all firms producing the same quantities of their
respective final goods and selling these at the same price. While they affect the propagation of production
failures, conditional on being functional local network features do not alter equilibrium prices and quantities.
This can be seen by analyzing the prices of different intermediate goods. First, because of constant returns
to scale, firms sell their intermediate goods at a price equal to marginal cost. It turns out that within
an industry each functional variety is subject to the same intermediate costs, and hence sells at the same
intermediate price regardless of their depth. Second, because of the regularity of the supply network, a
symmetry exists across industries which results in them selling at the same intermediate prices. These
results are shown formally in Lemmas 13 and 14 respectively. In Lemma 15, we show these results imply
that all firms sell the same amounts to consumers at the same final prices.

Lemma 13. The selling prices pv of the intermediate goods of all varieties v ∈ Vi within any industry i are
equal to some common price pi.

Proof. As there are constant returns to scale, in equilibrium each intermediate good must be sold at a price
equal to their respective marginal costs of production. Thus, by constant returns to scale, the price of
each variety’s intermediate good, pv, does not depend on the quantity firm v produces. We establish the
conclusion of the lemma by induction on the depth of the variety v. If d(v) = 0, firm v = (i, f) can source
from any firm in each industry j ∈ I(i) and can thus minimize its marginal costs. It is easy to deduce
from this that pv = minf∈[0,1] p(i,f). Now take a variety v of depth d(v) = d; by definition v sources its
intermediate goods from firms with depth d − 1 in each industry j. If these produce at minimal cost so it
follows that pv = minf∈[0,1] p(i,f). This gives us that all firms in the same industry have the same marginal
costs and thus the same intermediate prices, regardless of their depth. �

Lemma 14. For any two industries i and j their intermediate prices are equal: pi = pj .

Proof. From Lemma 13, there is a price pi such that all firms in industry i sell intermediate goods at price
pi. By constant returns to scale, pi is not a function of the quantity produced and is only a function of the
prices of the intermediates pj where j ∈ I(i). Moreover, each industry requires the same number of inputs
and combines these with labor (at common wage w). Thus marginal cost of production for a firm and hence
its price can be expressed as a function of just its intermediate good input prices pj for j ∈ I(i) and the wage
w and by symmetry this is the same function for all industries. We denote this function by P; it takes as its
input m intermediate good prices and the wage. The function is invariant to permutations of intermediate
good prices. We can construct a vector of input prices for industry i as Mip, where Mi is a m×N matrix
such that for each row r, the entry Mr,k = 0 for all k but one which we label ji(r). This index satisfies
ji(r) ∈ I(i); Mr,ji(r) = 1; and Mr′,ji(r) = 0 for r′ 6= r. (The matrix simply selects, in each row, one of the
inputs of industry i, and the corresponding entry of Mip corresponds to its price.) Then, for all industries
i,

pi = P(Mip;w),

The function P is weakly increasing in each input price and strictly increasing in each intermediate input
price pj for j ∈ I(i).

Now assume, for the sake of contradiction, that not all intermediate input prices are the same. Without
loss of generality, let pa = max{p1, ..., pN} and pb = min{p1, ..., pN} with pa

pb
= r > 1. By definition, the price

of each intermediate for industry a must be at most pa, and similarly the price of each input for industry b



55

must be at least pb. Thus each element of Map must be less than or equal to each element of rMbp. Now,
we claim

pa = P(Map;w) ≤ P(rMbp;w) < rP(Mbp;w) = rpb = pa.

To show the strict inequality, note that strictly increasing all intermediate prices relative to the wage leads to
a substitution toward labor, making the increase in unit costs less than proportional. This is a contradiction.
Thus, all industries must sell intermediate goods at the same price. �

Lemma 15. For any two functional firms, v, v′ ∈ V ′, the prices of these firms’ final goods are equal and the
same amount of each good is sold: pv = pv′ and q∗v(p) = q∗v′(p).

Proof. Recall that q∗v(p) denotes the demand of the consumer for final good v at prices p. We first calculate
the price elasticity of this demand for final good v.
The consumers maximize (22) subject to the constraints of (23). Using the method of Lagrange multipliers
to solve for the quantity of each variety demanded in terms of prices gives that for any two varieties v, v′,

q∗v(p)

p
1/(ηC−1)
v

=
q∗v′(p)

p
1/(ηC−1)
v′

(26)

Because there is a continuum of firms, changing the price level and quantity of firm v will not affect the
right-hand side of equation (26). Thus, the left-hand side of equation (26) is a constant function of pv. Upon
differentiating this function with respect to pv, we get

∂q∗v
∂pv
· pv −

q∗v
ηC − 1

= 0

Rearranging gives us that the price elasticity of demand for variety v at any price level is 1
ηC−1 .

Now consider a firm’s pricing problem. Given an intermediate good price p (which by Lemmas 13 and 14
is constant for all intermediate goods), there is a unique solution to the cost minimization problem of each
firm (Equation (24)).

This marginal cost of production is independent of the quantity produced and is faced by all firms in each
industry. Denote this marginal cost c. At a solution to this problem the firm charges a price pv that satisfies
the Lerner condition:

pv − c
pv

= − 1

εd(pv)
, (27)

where εd is the price elasticity of demand as a function of final good prices. Rearranging equation (27) and
substituting the previously calculated elasticity, we have

ηCpv = c (28)

It is clear that the left-hand side is injective in pv and there is a unique profit-maximizing price that all firms
choose. Additionally, as the price elasticity of demand is constant, equation (27) implies that all firms will
charge the same constant markup regardless of the quantity of goods they are producing. �

We have shown that in equilibrium: (i) each functional variety v has the same consumer good output qv,
which we will call q; (ii) these goods are all priced at the same price pv; (iii) all intermediate goods of variety
v ∈ V have the same price pv = p. There are two other features of the equilibrium that are crucial:

Lemma 16.

(1) Gross output is equal to h(ρ(x, µ)), where h : [0, 1] → R+ is an increasing and continuous function
with bounded derivative and h(0) = 0.

(2) The expected gross profit of producing each variety, conditional on that variety being functional, is
equal to g(ρ(x, µ)); where g : [0, 1]→ R+ is a decreasing function.

Proof. Note that because labor is the only unproduced input, all labor can be assigned to the production of
final goods by allocating labor used to produce intermediate goods to the final good that this intermediate
good is ultimately used to produce. Let Lv be the total labor assigned in this way to the production of
variety v’s final good. As by Lemmas 14 and 15 all firms have equivalent production functions, face the
same input prices and choose the same final good prices, they will use the same ratio of different inputs in
production. This symmetry throughout the supply network implies that Lv = L for all varieties v. (This
does not depend on depth because the zero depth producers have production functions identical to those of
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other firms and buy inputs—they can just do so from any variety without needing a specific relationship.)
As there is a total supply of labor equal to one and it is supplied inelastically, the amount of labor that can
be assigned to the production of any given final good is 1/λ(V ′), where λ(V ′) is the measure of functional
firms (and hence equal to ρ(x, µ) as the measure of firms is 1). As L units of labor are required to produce
one unit of any final good, this implies that

q∗v = q∗ =
1

Lλ(V ′) . Y = (λ(V ′)(q∗)ηC )
1/ηC =

λ(V ′)1/ηC−1
L

=
ρ(x, µ)1/ηC−1

L
(29)

Setting

h(ρ(x, µ)) =
ρ(x, µ)1/ηC−1

L
,

completes the proof of part (1).
It can be computed that L depends only on the constants in the production functions, and not on x,

which establishes (3).61

To compute the wage w in terms of the numeraire, we express the aggregate expenditure on final goods
in two different ways. On the one hand as the price of the aggregate consumer good has been normalized
to 1, it is simply the quantity of aggregate output as given by equation (29) On the other hand, it is the
expenditure of the consumer on all firms’ final goods, which we simplify using equation (28), and noting that
as all inputs are sold at cost all firms have a marginal cost of production equal to wL:

pv

∫

V
(qv)dv = ρ(x, µ)

wL

ηC

1

ρ(x, µ)L
=

w

ηC

Combining these two expressions for expenditure implies that

w =
(ηC
L

)
ρ(x, µ)

1−ηC
ηC .

From equation (28) each firm sets a final good price of pv = wL/ηC . Thus each firm earns gross profits

(
pv − c

)
q∗ = w

(
1− ηC
ηC

)
1

λ(V ′) =
(ηC
L

)
ρ(x, µ)

1−ηC
ηC

(
1− ηC
ηC

)
1

ρ(x, µ)
=

(
1− ηC
L

)
ρ(x, µ)

1
ηC
−2
. (30)

This directly implies the second part of the lemma, using the fact that ηC ∈ ( 1
2 , 1). �

Lemma 16 provides microfoundations for Properties A and C. Setting Y (V ′) = h(ρ(x, µ)), part (1) shows
that maximized aggregate output Y (V ′) satisfies Property A. Part (2) shows that the expected gross profit
function takes the form g(r) assumed in the model, with g(r) satisfying Property C—i.e., that g(r) is a
decreasing, continuously differentiable function. For these statements it is important that L depends only
on constants, not on x, which we have shown.

Part (2) of Lemma 16 follows from the household’s love of variety. Because of the love of variety that
households have, the profit maximizing price that firms set for their consumer goods is at a markup over
marginal cost. On the other hand, constant returns to scale in the production function means that interme-
diate goods that can be produced (i.e., which are able to source all of their required inputs) must be priced
at marginal cost in equilibrium. So firms’ profits depend just on the markup they charge to consumers,
and the quantities they sell to consumers. When more other varieties are functional the consumer’s love of
variety reduces demand for a given variety and hence the profits obtained by that variety.

C.3. Endogenizing relationship strengths: Efficient and equilibrium outcomes. Now we turn to
the earlier stage, before production, where firms invest in relationship strengths. Here our goal is to show
how the reduced-form modeling of investment costs that we presented in the main text (Section 4.2.2) fits
into the general equilibrium model.

61Let ` be the amount of labor firm v directly hires to produce a unit of its final good. Let z be the amount
of each intermediate firm v uses from one of its suppliers to produce a unit of its final good. By symmetry and
constant returns to scale, this firm minimizes its unit cost in terms of labor, L = `

1−mz subject to the constraint that

1 = zmεz `ε` . Solving the Lagrangian yields that for some constant γ, we have εz
z

= γ`
(1−mz)2 and ε`

`
= γ

1−mz . Solving

this shows that at the optimum z = εz, we have ` = ε
−mεz/ε`
z and L = ε

−mεz/ε`
z
ε`

.
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C.3.1. The technology of investment. There is a technology available to each firm to invest the consumption
good and increase relationship strengths. Before production, each firm if pledges some amount of the
consumption good to invest. We posit that it costs a firm 1

κc(xif−x) units of the numeraire (the consumption
good) to achieve relationship strength x with its potential suppliers, where c is a given function—an exogenous
technology of investment.

Thus, a firm’s expected profit when it is making its investment decision is

Πif = P (xif ;x, µ)g(r)− 1

κ
c(xif − x);

here both expected revenues and costs are in units of the numeraire. This microfounds the form of the firm
profits we have assumed.

C.3.2. Planner’s problem. We study the problem of efficiently choosing the investments in the first stage.
The planner may choose any symmetric investments x for the firms. For a fixed choice of relationship
strengths x, let h(ρ(x, µ)) denote the gross production of the aggregated consumption good. As we have
said, household consumption is YC = Y −YI , where YI is the value of the investment in relationship strength
in terms of the quantity of the consumption good devoted to it. These are costs that are sunk prior to
production. Obtaining reliability x for all such relationships costs the planner

YI =
∑

i∈I

∫

v∈Vi

1

κ
c(x− x)dv =

1

κ
c(x− x).

(Recall that the measure of the set of all varieties is λ(V) = 1.) Setting cP (x) = c(x− x) the planner’s cost
function inherits the key properties of the individual cost function (it is continuous, increasing, and weakly
convex with c(0) = 0, c′(0) = 0 and limx→1 c(x) = ∞ by Property B′) and hence satisfies the properties
assumed in Property B.

Maximizing YC = Y − YI amounts to our planner’s problem from the main text:

max
x∈[0,1]

h(ρ(x, µ))− 1

κ
cP (x)
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This document contains supporting material for the paper “Supply Network Formation and Fragility,”
which herein we refer to as the “main paper” or simply “paper.”

SA1. Omitted Proofs

In this section we restate the results in the paper for which proofs were omitted, and then provide
the missing proofs.

SA1.1. Lemma 2. Suppose the complexity of the economy is m ≥ 2 and there are n ≥ 1 potential
input suppliers of each firm. For r ∈ (0, 1] define

χ(r) :=
1−

(
1− r 1

m

) 1
n

r
. (SA-1)

Then there are values xcrit, rcrit ∈ (0, 1] such that:

(i) ρ̂(x) = 0 for all x < xcrit;
(ii) ρ̂ has a (unique) point of discontinuity at xcrit;
(iii) ρ̂ is strictly increasing for x ≥ xcrit;
(iv) the inverse of ρ̂ on the domain x ∈ [xcrit, 1], is given by χ on the domain [rcrit, 1], where

rcrit = ρ̂(xcrit);
(v) χ is positive and quasiconvex on the domain (0, 1];

(vi) χ′(rcrit) = 0.

Proof. We first list some properties of ρ̂ and χ.

Property 0: For positive r in the range of ρ̂, we have r = ρ̂(x) if and only if

x =
1− (1− r1/m)1/n

r
.

This is shown by rearranging equation (6) in the paper.

Property 1: χ(1) = 1. This follows by inspection.

Property 2: χ(r) > 0 for all r ∈ (0, 1]. This follows by inspection.

Property 3: limr↓0 χ(r) =∞. This follows by an application of l’Hopital’s rule, i.e.

lim
r↓0

d
dr

(
1− (1− r1/m)1/n

)

d
dr r

= lim
r↓0

(1− r1/m)1/n−1r1/m−1

mn
=∞.

Property 4: limr↑1 χ′(r) =∞. This follows by examining

χ′(r) =
r1/m(1− r1/m)1/n−1

mnr2
+

(1− r1/m)1/n − 1

r2

Property 5: There is a unique interior rcrit ∈ (0, 1) minimizing χ(r). To show this, define z(r) =
1/(1− r1/m), and note that r ∈ (0, 1) satisfies χ′(r) = 0 if and only if the corresponding z(r) > 1 solves

z − 1 = mn(z1/n − 1);
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here we use that the function z is a bijection from (0, 1) to (1,∞). The equation clearly has exactly one
solution for z > 1.1 Now it remains to see that the unique r ∈ (0, 1) solving χ′(r) = 0 defines a local
minimum. Note that χ is continuously differentiable on (0, 1). Property 3 implies that χ′(r) < 0 for
some r < rcrit while Property 4 implies that χ′(r) > 0 for some r > rcrit. These points suffice to show
Property 5.

To prove the lemma, we relate desired properties of ρ̂ to properties of χ; the claims made here can be
visualized by referring to Figure 11 in the paper, panels (A) and (B), which illustrate the properties of
the functions involved.

Together, Properties 0 and 5 imply that there is no r > 0 in the range of ρ̂ such that x < χ(rcrit). Let
xcrit = χ(rcrit), which yields (vi) of the lemma; then what we have said implies ρ̂(x) = 0 for x < xcrit,
i.e., statement (i) of the lemma. The proof of Property 5 also implies statement (v) in the Lemma.

It remains to show (ii-iv) of the Lemma. By definition, ρ̂(x) is the largest solution of (6) in the paper.
Properties 1 and 5 imply that on the domain [rcrit, 1], χ is a strictly increasing function whose range is
[xcrit, 1]. Fix an r ∈ [rcrit, 1] and let x = χ(r). What we have said implies that (x, r) solves (6) in the
paper and that there is no r′ with r′ > r such that (x, r′) solves (6) in the paper. Thus, by definition
r = ρ̂(x). Notice that as we vary r in the interval, x varies over the interval [xcrit, 1]. This establishes
(iv), and (iii) follows immediately from the fact that χ is increasing on the domain in question. For (ii),
it suffices to deduce from Properties 2 and 5 that the minimum of χ has both coordinates positive.

We now consider the case n = 1. Here, dχ(r)
dr = r1/m−mr1/m

mr2 < 0 for all r ∈ (0, 1]. Since from
Properties 1 and 3 (which still hold when n = 1), χ(1) = 1 and limr↓0 χ(r) = ∞, it follows that χ(r)
is decreasing in r and has image [1,∞). Thus, by logic similar to the above, ρ̂(x) = 0 for all x ∈ [0, 1)
and ρ̂(x) = 1 when x = 1. It follows that xcrit = 1 in this case and all the statements of the lemma are
satisfied, though some of them are trivial. �

SA1.2. Lemma 4. Fix any m ≥ 2, n ≥ 2, and r ≥ rcrit. There are uniquely determined real numbers
x1, x2 (depending on m,n, and x) such 0 ≤ x1 < x2 < 1/r and so that:

0. Q(0; r) = Q(1/r; r) = 0 and Q(xif ; r) > 0 for all xif ∈ (0, 1/r);

1. Q(xif ; r) is increasing and convex in xif on the interval [0, x1];

2. Q(xif ; r) is increasing and concave in xif on the interval (x1, x2];

3. Q(xif ; r) is decreasing in xif on the interval (x2, 1].

4. x1 < xcrit.

Proof. As a piece of notation, define
ζ(xif ; r) = 1− xifr.

When using ζ, we will often omit the arguments for brevity. Then

Q(xif ; r) = mnrζn−1(1− ζn)M−1.

Statement 0. It follows immediately from this equation that Q(0; r) = Q(1/r; r) = 0 and
Q(xif ; r) > 0 for all xif ∈ (0, 1/r). This establishes Claim 0 in the lemma statement.

Statements 1–3. Establishing Statements 1–3 is more involved; we begin by studying the first
derivative of Q to establish the increasing/decreasing statements, and then move to the second derivative
to establish the convex/concave statements.

We can calculate

Q′(xif ; r) = −mnr2ζn−2 (1− ζn)
M−2

[(mn− 1) ζn − n+ 1].

Note that for xif ∈ (0, 1/r) we have2

sign [Q′(xif ; r)] = sign [(mn− 1) ζn − n+ 1] . (SA-2)

Further, for sufficiently small xif > 0

sign [(mn− 1) ζn − n+ 1] = sign [n(m− 1)] > 0.

1The left-hand side is linear and the right-hand side is concave, since n ≥ 2. At z = 1 the two sides are equal, and the

curves defined by the left-hand and right-hand sides are not tangent, so there is exactly one solution z > 1.
2The sign operator is +1 for positive numbers, −1 for negative numbers, and 0 when the argument is 0.
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Thus Q′(0; r) > 0.

We will now deduce from the above calculations about Q′ that there is exactly one local maximum
of xif 7→ Q(xif ; r) on its domain, [0, 1/r]. First, as this is a continuous function with Q(0; r) = 0 =
Q(1/r; r) and Q′(0; r) > 0, it follows there is an interior maximum of Q(xif ; r) in the interval (0, 1/r).
Next, by (SA-2), sign [Q′(xif ; r)] > 0 if and only if

xif <
1−

(
n−1
mn−1

) 1
n

r
.

Thus, there can be at most one value of x∗if with Q′(x∗if ; r) = 0. Together, these observations imply
that Q has one local optimum on its extended domain, which is in fact a global maximum. We let x2
be defined by the unique value of xif at which Q′(x∗if ; r) = 0. This establishes Property 3. It also

establishes the “increasing” part of Properties 1 and 2, since Q(xif ; r) is increasing to the left of x2 by
what we have said.

The next part of the proof studies the second derivative of Q to establish the claims about the
convexity/concavity of Q. First note that

Q′′(xif ; r) = mnr3ζn−3 (1− ζn)
M−3

H

where

H =
(
m2n2 − 3mn+ 2

)
︸ ︷︷ ︸

A

ζ2n +
(
(1− 3m)n2 + (3m+ 3)n− 4

)
︸ ︷︷ ︸

B

ζn + n2 − 3n+ 2︸ ︷︷ ︸
C

.

For xif ∈ (0, 1/r), we can see that

sign [Q′′(xif ; r)] = sign [H] . (SA-3)

Let z := ζn for z ∈ (0, 1) (which corresponds to xif ∈ (0, 1/r)). We can then write H = H̃(z) for
z ∈ (0, 1), where

H̃(z) = Az2 +Bz + C, (SA-4)

and A, B and C are constants (labeled above) depending only on m,n. H̃ is therefore a quadratic
polynomial in z and its roots depend only on n and m. Further, A > 0, B < 0, C > 0 and A+B+C > 0.

Thus H̃ is convex in z with H̃(0) > 0 and H̃(1) > 0.

We first argue that minz∈[0,1] H̃(z) < 0. Towards a contradiction suppose minz∈[0,1] H̃(z) ≥ 0. This
implies that Q′′ is nonnegative by equation SA-3 and hence that Q is globally convex. However, we have
already established that Q′(0; r) > 0, so the convexity of Q implies there can be no interior maximum,
which contradicts our deductions above.

An immediate implication of minz∈[0,1] H̃(z) < 0 is that H̃(z) has two real roots, z1 and z2 < z1.

This establishes the basic shape of H̃(z) as illustrated in Figure 1.

It will be helpful to sometimes consider the values of xif that correspond to the roots of the H̃(z).
To this end, we define the function

X(z) :=
1− z1/n

r
. (SA-5)

We can then set x1 = X(z1) (i.e., the first inflection point of Q). Along with what we already know, the

deduced shape of H̃(z) pins down the remaining properties we require about the shape of Q, as we now
argue. For an illustration, see Figure 1.

As z1 > z2, it follows that H̃ ′(z1) > 0. This corresponds to Q′′(xif ; r) going from positive to negative
as xif crosses x1 := X(z1), and thus Q(xif ; r) going from convex to concave. As Q′(0; r) > 0 and
Q(xif ; r) is convex for xif ∈ [0, x1], the maximum of Q must occur at a value of xif ∈ (x1, 1). Recalling
that we let x2 be the value of xif at which Q(xif ; r) is maximized we conclude that x1 < x2. Further,
as for values of xif < x1 the function Q(xif ; r) is convex, we have established the convexity part of
Property 2 of Lemma 4.

By similar reasoning, H̃ ′(z2) < 0. This corresponds to Q′′(xif ; r) going from negative to positive as
xif crosses X(z2). Recall that x2 is defined as the maximum of Q. We must have X(z2) > x2. If not, Q
would be increasing and convex for all xif ≥ X(z2), contradicting the existence of an interior maximum
as already established. This establishes that the function Q remains concave until after its maximum
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𝑧1 𝑧
1

෩𝐻

𝑧2

(a)

𝑄 Convex Concave Convex

𝑥𝑖𝑓𝑋(𝑧1) 𝑥2 𝑋(𝑧2) 𝑋(0)𝑋(1)

(b)

Figure 1. Panel (a) shows basic shape of the function H̃(z). Panel(b) shows the basic
shape of the function Q(xif ; r), where the convexity and concavity in different regions

is implied by the shape of H̃(z).

point x2 establishing the concavity part of Property 3. This completes our demonstration of Statements
1–3.

Statement 4. We now argue that x1 < xcrit to establish Statement 4. We do so in two steps. First
we show it for the case in which firms other than if have reliability r = rcrit, and deduce the r > rcrit
case.

The case r = rcrit. We need to establish that

x1 =
1− z1/n1

rcrit
<

1− (1− r1/mcrit )1/n

rcrit
= xcrit.

This holds if and only if z > 1− r1/mcrit , which is equivalent to rcrit > (1− z)m. A sufficient condition for
this to hold is that χ′((1− z)m) < 0, since we know from Lemma 2 in the paper that χ′(rcrit) = 0.

Note that

χ′(r) =
r1/m(1−r1/m)1/n−1

mn + (1− r1/m)1/n − 1

r2

Setting r = (1− z)m in the above yields

χ′((1− z)m) =
(1−z)z1/n−1

mn + (z)1/n − 1

(1− z)2m .

The denominator is always positive, hence we only need to verify that the numerator is negative, when

evaluated at the larger of the two roots of H̃, which we will call z1. The numerator simplifies to

Num(z) = z1/n
(1− z
mnz

+ 1
)
− 1

and must now be evaluated at the root z1. This root is given by the quadratic formula as

z1 =
D +

√
D2 − 4(n2 − 3n+ 2)(m2n2 − 3mn+ 2)

2(m2n2 − 3mn+ 2)
,

where D = 3mn2 − 3mn− n2 − 3n+ 4. This expression for z1 simplifies to

z1 =
n
(

3m(n− 1) +
√

(m− 1)(n− 1)(5mn−m− n− 7)− n− 3
)

+ 4

2(mn− 2)(mn− 1)
.

Now we claim that the shape of Num(z) is pictured in Fig. 2:
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𝑧 
1 

Num(z) 

Figure 2. Shape of Num(z).

Thus a sufficient condition for Num(z1) < 0 is that z1 > zmin.

We will now calculate zmin and verify the shape of Num(z) is as claimed. It is easy to show that

zmin = n−1
mn−1 by solving dNum(z)

dz = 0.3 We also note that since z1/n−2 and mn2 are always positive,

sign

[
dNum(z)

dz

]
= sign [z(mn− 1) + 1− n] ,

and thus the function Num(z) is decreasing on z ∈ [0, zmin) and increasing on z ∈ (zmin,∞).

Since Num(1) = 0, the above imply that Num(z) < 0 over the range [zmin, 1). Thus, we only need to
check that z1 > zmin in order to guarantee that Num(z1) < 0.

It is easy to verify that the following inequality holds4:

zmin =
n− 1

mn− 1

<
n
(

3m(n− 1) +
√

(m− 1)(n− 1)(5mn−m− n− 7)− n− 3
)

+ 4

2(mn− 2)(mn− 1)
= z1.

We conclude (recalling the beginning of this proof) that z1 > 1 − r1/mcrit . This establishes that x̂ < xcrit
when r = rcrit.

The case r > rcrit. From Eq. (SA-5), it is clear that x1 is decreasing in r. This establishes Property
4 of Lemma 4, completing the proof of Lemma 4. �

SA1.3. Lemma 8. The function β(r) is quasiconcave and has a maximum at r̂ :=
(

(2m−1)n
2mn−1

)m
.

Proof. Recall that β(r) = mnr2−
1
m (1−r 1

m )1−
1
n . We will show that β(r) is quasiconcave by demonstrat-

ing that there exists an r̂ ∈ (0, 1) such that β′(r) > 0 for r ∈ (0, r̂), β′(r) < 0 for r ∈ (r̂, 1) and β′(r) = 0
for r = r̂.

β′(r) = mn

(
2− 1

m

)
r1−

1
m

(
1− r 1

m

)1− 1
n −

(
1− 1

n

)
mnr2−

1
m

(
1− r 1

m

)− 1
n

(
1

m
r

1
m−1

)

= mnr1−
1
m

(
1− r 1

m

)− 1
n

[(
2− 1

m

)
− r 1

m

[(
2− 1

m

)
+

(
1− 1

n

)
1

m

]]
.

3Indeed,
dNum(z)

dz
=

z1/n−2(z(mn−1)+1−n)

mn2 and thus a first-order condition is satisfied when z(mn− 1) + 1− n = 0.
4Indeed, multiplying both sides by 2(mn− 2)(mn− 1) yields

2(mn− 2)(n− 1) < n
(

3m(n− 1) +
√

(m− 1)(n− 1)(5mn−m− n− 7)− n− 3
)

+ 4

which, after some algebra, reduces to

0 < n(mn+ 1−m− n) + n
√

(m− 1)(n− 1)(5mn−m− n− 7).

Since all terms on the right-hand side are clearly positive when m,n ≥ 2, the inequality holds.
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Note that the the first factor, mnr1−
1
m

(
1− r 1

m

)− 1
n

, exceeds 0 for any r ∈ (0, 1) and is equal to 0 for

r = 0, 1. Moreover, the expression multiplying it,(
2− 1

m

)
− r 1

m

[(
2− 1

m

)
+

(
1− 1

n

)(
1

m

)]
,

is a strictly decreasing, continuous function of r. It is also strictly positive when r = 0 and strictly
negative when r = 1, implying that it is equal to 0 at some r ∈ (0, 1). It follows that there exists an
r̂ ∈ (0, 1) satisfying the claimed properties.

Having established that β(r) is quasiconcave and β′(r̂) = 0, it follows immediately that β(r) is
maximized at r = r̂. To find r̂, we use its defining property and solve the following equation:

r
(

(2m− 1)nr−1/m − 2mn+ 1
)(

1− r1/m
)−1/n

= 0.

As r
(
1− r1/m

)−1/n
> 0 for any positive production equilibrium, the equation is solved by

r̂ =

(
(2m− 1)n

2mn− 1

)m
.

This completes the proof. �

SA1.4. Lemma 9. Recall that r̂ :=
(

(2m−1)n
2mn−1

)m
. For all n ≥ 2 and m ≥ 3, r̂ < rcrit.

Proof. By Lemma 2 in the paper, the function χ(r) is positive and quasiconvex on the domain [0, 1] with
rcrit = argminr χ(r). Thus, r̂ < rcrit if and only if χ′(r̂) < 0.

Recall that χ(r) = 1−(1−r1/m)1/n

r and so

χ′(r) =
1
n (1− r1/m)1/n−1 1

mr
1/m −

(
1− (1− r1/m)1/n

)

r2
.

We will study this expression evaluated at r̂ =
(

(2m−1)n
2mn−1

)m
from Lemma 8 in the paper.

The denominator of the above expression for χ′(r) is always positive, so we need only check that the

numerator is negative. Calling A = n−1
2mn−1 and B = n+1−1/m

n−1 , we may rewrite the numerator, after

some simplifications, as A1/nB − 1, and thus we need only check that

A1/nB < 1 (SA-6)

Let h(n,m) = A1/nB .To demonstrate (SA-6), we will show that:

• Step 1: h(n, 3) < 1, for all n ≥ 2.
• Step 2: h(n,m) is decreasing in m, for all n ≥ 2.

Step 1: First note that

h(n, 3) =

(
n− 1

6n− 1

)1/n(
n+ 1− 1/3

n− 1

)

We will show that

• Step 1a: h(n, 3) is increasing in n.
• Step 1b: limn→∞ h(n, 3) = 1.

From this we can conclude that h(n, 3) < 1, for all n ≥ 2.

To show Step 1a, note that

∂h(n, 3)

∂n
= −

(
n−1
6n−1

)1/n (
(18n2 + 9n− 2) ln( n−16n−1 ) + 30n2 + 10n

)

3n2 (n−1)
(6n−1)

The denominator is positive for all n ≥ 2. Looking at the numerator, since
(
n−1
6n−1

)1/n
> 0 for all n ≥ 2,

it suffices to show that

(18n2 + 9n− 2) ln

(
n− 1

6n− 1

)
+ 30n2 + 10n < 0 for all n ≥ 2



SUPPLY NETWORK FORMATION AND FRAGILITY: SUPPLEMENTARY APPENDIX 7

in order to ensure that ∂h(n,3)
∂n > 0. It is easy to show that

ln

(
n− 1

6n− 1

)
< ln

(
1

6

)
< −1.79

Thus, for all n ≥ 2

(18n2 + 9n− 2) ln

(
n− 1

6n− 1

)
+ 30n2 + 10n < −(18n2 + 9n− 2)1.79 + 30n2 + 10n

< −32n2 − 16n+ 4 + 30n2 + 10n

= −2n2 − 6n+ 4

< 0.

We thus conclude5 that h(n, 3) is increasing in n and Step 1a is proved.

Step 1b follows immediately by noting that

lim
n→∞

h(n, 3) = lim
n→∞

(
1

6

)1/n

= 1

We have thus proved Step 1.

Step 2. To show that h(n,m) is decreasing in m, let us note that, for all n ≥ 2

∂h(n,m)

∂m
= B

∂A1/n

∂m
+A1/n ∂B

∂m

=

(
n− 1

2mn− 1

)1/n( −2

m(n− 1)

mn(1 + 1/n)− 1

2mn− 1
+

1

(n− 1)m2

)

<

(
n− 1

2mn− 1

)1/n( −1

m(n− 1)
+

1

(n− 1)m2

)

< 0.

where the second equality follows after some simplifications, while the first inequality follows from the

fact that mn(1+1/n)−1
2mn−1 > 1

2 , which is easy to check.

We have thus shown that h(n,m) is decreasing in m, for any n ≥ 2, and Step 2 is thus proved.

This concludes the proof of the lemma. �

SA2. How production unravels when relationship strength is too low

Figure 3(b) in the main paper shows that when x drops below xcrit, the mass of firms that can
consistently function falls discontinuously to ρ(x) = 0. While we will typically just work with the fixed
point as the outcome of interest, the transition will not be instantaneous in practice. How then might
the consequences of a shock to x actually play out?

In Figure 3, we work through a toy illustration to shed some light on the dynamics of collapse. Using
the same parameters as our previous example, suppose relationship strength starts out at x = 0.8. The
higher curve in panel (a) is R(·;x) for this value of x. The reliability of the economy here is r0, a fixed
point ofR, which is the mass of functioning firms. Now suppose that a shock occurs, and all relationships
become weaker, operating with the lower probability x = 0.7. The R curve now shifts, becoming the
lower curve.

To consider the dynamics of how production responds, we must specify a few more details. We sketch
one dynamic, and only for the purposes of this subsection. We interpret idiosyncratic link operation
realizations as whether a given relationship works in a given period. Before the shift in x, a fraction r0
of the firms are functional. Let F̃(0) be the random set of functional firms at the time of the shock to x.
Now x shifts to 0.7; we can view this as a certain fraction of formerly functional links failing, at random.
Then firms begin reacting over a sequence of stages. Let us suppose that at stage s a firm can source its

5It is worth noting that this argument does not work for m = 2, in which case the numerator of
∂h(n,2)

∂n
could be negative

and thus h(n, 2) could be decreasing.
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Figure 3. The dynamics of unraveling (with the same parameters as in Figure 4 in the main paper,
as discussed in Section SA2.

inputs if it has a functional link to a supplier who was functional in the last stage, s− 1.6 Let F̃(s) be
the set of these functional firms. By the same reasoning as in the previous subsection, we can see that

the mass of F̃(s), which we call rs, is R(rs−1). Iterating the process leads to more and more firms being
unable to produce as their suppliers fail to deliver essential inputs. After stage 1, the first set of firms
that lost access to an essential input run out of stock and are no longer functional. This creates a new
set of firms that cannot access an essential input, and these firms will be unable to produce at the end
of the subsequent stage, and so on. The mass of each rs can be described via the graphical procedure of
Figure 3: take steps between the R curve and the 45-degree line.

This discussion helps make three related points. First, even though the disappearance of the positive
fixed point—and thus the possibility of a positive mass of consistently functional firms—is sudden, the
implications can play out slowly under natural dynamics.7 The first few steps may look like a few firms
being unable to produce, rather than a sudden and total collapse of output.

The second point is more subtle. Suppose that when the dynamic of the previous paragraph reaches
r2, the shock is reversed, x again becomes 0.8, and R again becomes the higher curve. Then, with
some supply links reactivated, some of the firms that were made non-functional as the supply chain
unravelled will become functional again, and this will allow more firms to become functional, and so
on. Such dynamics could take the system back to the r0 fixed point if sufficiently many firms remain
functional at the time the shock is reversed. Thus, our theory predicts that sufficiently persistent shocks
to relationship strength lead to eventual collapses of production, but, depending on the dynamics, the
system may also be able to recover from sufficiently transient shocks.

The third point builds on the second. Suppose that a shock is anticipated and expected to be
temporary. Then firms may take actions that slow the unravelling to reduce their amount of downtime.
For example, they may build up stockpiles of essential inputs. If all firms behave in this way, the
dynamics can be substantially slowed down and the possibility of recovery will improve.

Having illustrated some of the basic forces and timing involved in unraveling, we do not pursue here
a more complete study of the dynamics of transient shocks, endogenous responses, etc.—an interesting
subject in its own right. Instead, from now on we will focus on the size, ρ(x), of the consistent functional
set, which is the steady-state outcome under a relationship strength x.

6For example, firms might hold inventories that enable them to maintain production for a certain amount of time, even
when unable to source an essential input. Even if firms engage in just-in-time production and do not maintain inventories
of essential inputs, there can be a lag between shipments being sent and arriving.
7Indeed, in a more realistic dynamic, link realizations might be revised asynchronously, in continuous time, and firms
would stop operating at a random time when they can no longer go without the supplier (e.g., when inventory runs out).
Then the dynamics would play out “smoothly,” characterized by differential equations rather than discrete iteration.
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SA3. Interdependent supply networks and cascading failures

We now posit an interdependence among supply networks wherein each firm’s profit depends on the
aggregate level of output in the economy, in addition to the functionality of the suppliers with whom it
has supply relationships. Formally, suppose, κs = Ks(Y ), where Ks is a strictly increasing function and
Y is the integral across all sectors of equilibrium output:

Y =

∫

S
ρ(x∗s)dΦ(s).

Here we denote by x∗s the unique positive equilibrium in sector s. The output in the sector is the
reliability in that sector, ρ(x∗s).

The interpretation of this is as follows: When a firm depends on a different sector, a specific supply
relationship is not required, so the idiosyncratic failure of a given producer in the different sector does
not matter—a substitute product can be readily purchased via the market. Indeed, it is precisely when
substitute products are not readily available that the supply relationships we model are important.
However, if some sectors experience a sudden drop in output, then other sectors suffer. They will not
be able to purchase inputs, via the market, from these sectors in the same quantities or at the same
prices. For example, if financial markets collapse, then the productivity of many real businesses that
rely on these markets for credit are likely to see their effective productivity fall. In these situations,
dependencies will result in changes to other sectors’ profits even if purchases are made via the market.
Our specification above takes interdependencies to be highly symmetric, so that only aggregate output
matters, but in general these interdependencies would correspond to the structure of an intersectoral
input-output matrix, and K would be a function of sector level outputs, indexed by the identity of the
sourcing sector.

This natural interdependence can have very stark consequences. Consider an economy characterized
by a distribution Ψ in which the subset of sectors with m ≥ 2 has positive measure, and some of these
have positive equilibria. Suppose that there is a small shock to x. As already argued, this will directly
cause a positive measure of sectors to fail. The failure of the fragile sectors will cause a reduction in
aggregate output. Thus κs = Ks(Y ) will decrease in other sectors discontinuously. This will take some
other sectors out of the robust regime. Note that this occurs due to the other supply chains failing
and not due to the shock itself. As these sectors are no longer robust, they topple too following an
infinitesimal shock to x. Continuing this logic, there will be a domino effect that propagates the initial
shock. This domino effect could die out quickly, but need not. A full study of such domino effects is
well beyond our scope, but the forces in the very simple sketch we have presented would carry over to
more realistic heterogeneous interdependencies.

Fig. 4 shows8 how an economy with 100 interdependent sectors responds to small shocks to x. In
this example, sectors differ only in their initial κ’s. The technological complexity is set to m = 5 and
the number of potential suppliers for each firm is set to n = 3. The cost function9 for any firm if is
c(xif −x) = 0.01

(1−(xif−x))2 while the gross profit function is g(ρ(x)) = 5(1−ρ(x)). This setup yields values

κ = 0.963 and κ̄ = 3.585 delimiting the region corresponding to critical (and therefore fragile) equilibria,
as per Theorem 1.

In Fig. 4(a), the productivity shifter of a given sector is distributed uniformly, i.e. κs ∼ U(κ, 25), so
that many sectors have high enough productivity to be in a robust equilibrium while a small fraction
have low enough productivity to be in a fragile equilibrium. A small shock to the x of all sectors thus
causes the failure of the fragile sectors (there are initially 12 of them). This then decreases the output Y
across the whole economy, but only to a small extent (as seen in the right panel). The resulting decrease
in the productivities of the robust sectors is thus only enough to bring one robust sector into the fragile

8Note that in this example, the cascade dynamics is as follows: At step 1, firms in sectors with a κ in the fragile range fail
due to an infinitesimal shock to x. The initial economy-wide output Y1 is then decreased to Y2 and the κ’s are updated
using an updating function K(Y ) increasing in Y . Only then, are the firms in the surviving sectors allowed re-adjust xif .
At step 2, infinitesimal shocks hit again and the firms newly found in the fragile regime fail. This process goes on at each
step until no further firm fails, at which point the cascade of failures stops.
9For simplicity, we set x = 0. An infinitesimal shock to x has the effect of causing the firms of sectors in the fragile regime
to fail, but does not affect the value of x, which remains at 0.
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Figure 4. Number of sectors that remain productive (left) and economy-wide output Y (right) for

each step of a cascade of failures among 100 interdependent sectors. For all sectors: n = 3, m = 5,

c(xif − x) = 0.01
(1−(xif−x))2

, g(ρ(x)) = 5(1 − ρ(x)). This yields κ = 0.963 and κ̄ = 3.585. In row (a),

100 sectors have κs initially distributed according to U(κ, 25); In row (b), 100 sectors have κs initially
distributed according to U(κ, 13); In row (c), 100 sectors have κs initially distributed according to

U(κ, 10).

regime and thus to cause it to fail as well upon a small shock. In the end, a total of only 13 sectors have
failed.

In contrast, Fig. 4(b) shows an economy where κs ∼ U(κ, 13), so that more sectors have low enough
productivity to be in a fragile equilibrium. A small shock to the x of all sectors causes the failure of
the fragile sectors (now initially 24). These have a larger effect on decreasing the output Y across the
whole economy (as seen in the right panel). The resulting decrease in the productivities of the robust
sectors is now enough to bring many of them into the fragile regime and to cause them to fail upon
an infinitesimal shock to x. This initiates a cascade of sector failures, ultimately resulting in 50 sectors
ceasing production.

Fig. 4(c) shows an economy where κs ∼ U(κ, 10), so that even more sectors have low enough
productivity to be in a fragile equilibrium. A small shock to the x of all sectors causes the failure
of the fragile sectors (now initially 26) and this initiates a cascade of sector failures which ultimately
brings down all 100 sectors of the economy.

The discontinuous drops in output caused by fragility, combined with the simple macroeconomic
interdependence that we have outlined, come together to form an amplification channel reminiscent, e.g.,
of Elliott, Golub, and Jackson (2014) and Baqaee (2018). Thus, the implications of those studies apply
here: both the cautions regarding the potential severity of knock-on effects, as well as the importance
of preventing first failures before they can cascade.

SA4. Production networks with limited depth

The main results of the paper are stated for supply chain depth d sufficiently large. In this section,
we numerically explore the shape of the reliability function ρ̃(x, d) at realistic values of d. We do so
while allowing for some systematic heterogeneity (for example, more upstream tiers being simpler).

To motivate the literal modeling of assembly in finitely many tiers, we return to the example of an
Airbus A380. This product has 4 million parts. The final assembly in Toulouse, France, consists of six
large components coming from five different factories across Europe: three fuselage sections, two wings,
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and the horizontal tailplane. Each of these factories gets parts from about 1500 companies located in
30 countries10. Each of those companies itself has multiple suppliers, as well as contracts to supply and
maintain specialized factory equipment, etc.

As in the main paper consider a depth-d supply tree, but let each firm in tier t ∈ {0, 1, ..., d} require
mt kinds of inputs and have nt potential suppliers of each input. Here t = d is the most downstream
tier and t = 0 is the most upstream tier. The nodes at tier t = 0 are functional for sure. As before,
we denote by ρ̃(x, d) the probability of successful production at the most downstream node of a depth-d
tree with these properties. This is defined as

ρ̃(x, d) = (1− (1− ρ̃(x, d− 1)x)nd)md

with ρ̃(x, 0) = 1, since the bottom-tier nodes do not need to obtain inputs.

We see that the expression is recursive and, if unraveled explicitly, would be unwieldy after a number
of tiers. However, we know from Definition 5 and Proposition 6 (both in the paper) that when mt = m
and nt = n for all t, then for any x ∈ [0, 1], as d goes to infinity, ρ̃(x, d) converges to the correspondence
ρ(x).

We start with some examples where mt and nt are the same throughout the tree. Figure 5 illustrates
the successful production probability ρ̃(x, d) for different finite depths d and how quickly it converges to
the correspondence ρ(x).

Figure 5. Successful production probability ρ̃(x, d) for different finite numbers of tiers
d. In panel (A), m = 5 and n = 4. In panel (B), m = 40 and n = 4.

In panel (A), we see that ρ̃(x, d) exhibits a sharp transition for a depth as small as d = 3. The red
curve (d = 6) shows that when the investment level x drops from 0.66 to 0.61, or about 7 percent,
production probability ρ̃(x, 6) drops from 0.8 to 0.1. (Thus ρ̃(x, 6) achieves a slope of at least 14.) In
panel (B), we see that increasing product complexity (by increasing m to 40) causes ρ̃(x, d) to lie quite
close to ρ(x). This illustrates how complementarities between inputs play a key role in driving this
sharp transition in the probability of successful production. Note that m = 40 is not an exaggerated
number in reality. In the Airbus example described earlier, many components would exhibit such a level
of complexity.

However, a complexity number like m = 40 will not occur everywhere throughout the supply network.
Indeed, and more generally, one might ask whether the regularity in the production tree is responsible
for the sharpness of the transition. To investigate this possibility, in Figure 6 we plot ρ̃(x, d) for a supply

10Source: “FOCUS: The extraordinary A380 supply chain”. Logistics Middle East. Retrieved on 28 may, 2019 from
https://www.logisticsmiddleeast.com/article-13803-focus-the-extraordinary-a380-supply-chain
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tree with irregular complexity, where different tiers may have different values of mt. Here we construct
4 trees whose complexity increases with d. The first trees has d = 3 and m1 = 2, m2 = 6 and m3 = 10.
The second tree has d = 6, mt = 2 for t = 1, 2, mt = 6, for t = 3, 4 and mt = 10, for t = 5, 6. The third
tree has d = 9, mt = 2 for t = 1, 2, 3, mt = 6, for t = 4, 5, 6 and mt = 10, for t = 7, 8, 9. Finally, the
fourth tree has large depth (here d = 999), mt = 2 for t below the first tercile, mt = 6 for t between the
first and the second terciles and mt = 10 for t above the second tercile. We see that trees of moderate
depth once again exhibit a sharp transition in their probability of successful production. This feature is
thus not at all dependent upon the regularity of the trees.
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Figure 6. Successful production probability ρ̃(x, d) for different finite numbers of tiers
d, but where different tiers may have different complexity m.

SA5. Heterogeneity

There is a finite set of products, I. Each product i ∈ I is associated with a product complexity mi

and a finite set of inputs I(i) ⊆ I of cardinality mi. Thus, the number of inputs required can be different
for different products. For each product i and input j ∈ I(i), there is a number nij of potential suppliers
of product j that each firm has; thus nij replaces the single multisourcing parameter n. For each pair
i, j ∈ I, there is a relationship strength xij such that every link where product i sources product j has
a probability xij of being operational.

We generalize our basic model of depth by assigning each firm a generalized depth. Let the set of
depth types be D, indexed by the nonnegative integers, with a typical element denoted δ. The lowest
depth type firms, with δ = 0, require no specific sourcing. Any higher depth type firm sources only from
depth types lower than it. We then construct the potential supply network as follows: Each firm in
industry i has a depth type δif ∈ D. There is a distribution µi ∈ ∆(D) of depth types in product i. For
every i ∈ I, j ∈ I(i), and δ ∈ D with δ > 0 and µi(δ) > 0, there is a measure µij,δ ∈ ∆(D∩ [0, δ)) which
is the distribution of depths of product j when i sources from j, assuming nij > 0. The distribution of
the depths of if ’s suppliers can be different in different inputs j. A depth type has no required inputs if
and only if it is of depth zero. We assume that draws of δjf ′ are independent across different suppliers
jf ′ (just for simplicity). We assume that if there is a positive measure of firms of depth δ in product i
and some j, δ′ for which µij,δ(δ

′) > 0 (i.e., there is a positive probability of depth-δ firms in i matching
with depth-δ′ firms in j) then µj(δ

′) > 0.11

11We do not need to impose any other accounting identities, since the average number of in-links to any variety is arbitrary
and not does not play a role in our results. An equivalent way of looking at the structure just described is that supply
networks are (as before) directed acyclic graphs—see Tintelnot et al. (2018) for a similar model. This implies that there are
some firms that require no specific sourcing. We assign these firms depth δ = 0. Removing these firms from the network,
there must then be some remaining firms that require no specific sourcing from the other remaining firms. These are depth
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We also need to impose conditions to make the finite depth model converge in a suitable sense to an
infinite model. Define a profile

µ(τ) = [(µi(τ))i∈I , (µij,δ(τ))i∈I,j∈I(j),δ∈D]

of depth distributions to be parameterized by τ as in the basic model. We impose a condition that
captures that, as τ →∞, chains become deeper.

Assumption SA1.

(1) For any i ∈ I, any j ∈ I(i), and any δ, δ′ ∈ D such that δ′ > δ′, the distribution µij,δ′ first-order
stochastically dominates µij,δ.

(2) For any i ∈ I, any j ∈ I(i), and any δ ∈ D, the mass placed on [0, δ] by µij,δ(τ) tends to 0 as
δ →∞.

(3) For any i ∈ I, any j ∈ I(i), and any δ ∈ D, the mass placed on [0, δ] by µi(τ) tends to 0 as
τ →∞.

Now we can iteratively define reliabilities for this model. Let ρ̃i,δ(xij) = 1 if δ = 0 and, inductively,
for δ > 0,

ρ̃i(δ) =
∏

j∈I(i)
Eδ′∼µij,δ

[
1− (1− ρ̃j(δ′)xij)nij

]
. (SA-7)

In the expectation, we are summing over different values of δ′, weighted by probabilities µij,δ(δ
′). Anal-

ogously to the main model, we define

ρi = Eδ∼µij ρ̃i(δ), (SA-8)

and we let ρ(x,µ) denote the (multidimensional) reliability function thus constructed.

Again paralleling the main model, we will now study a function that corresponds to the limit of the
system (SA-7) as τ →∞. We will use the notation ri for the fraction of firms in product i functioning,
and let r denote a vector of all such reliabilities. Define R(r) by

[R(r)]i =
∏

j∈I(i)
[1− (1− rjxij(ξ))nij ] . (SA-9)

Lemma SA1. There is a pointwise-largest fixed-point of the function R(r), denoted by ρ̂(x). Moreover,
ρ(x, τ) converges pointwise to ρ̂(x) as τ →∞.

Proof. By Tarski’s theorem, since R is monotone, it has a pointwise largest fixed point.

By inductively using Assumption SA1(1), it can be shown that ρ̃(δ) is pointwise decreasing in δ. This
monotone sequence must have a limit point, and by applying Assumption SA1(2) we can see that it
must be a fixed point of R. Moreover, the argument of Echenique (2005, Section 4) shows that it is the
largest fixed point. Finally, Assumption SA1(3) guarantees that ρ(x) converges to this fixed point as
well. �

We now prove that a sharp transition in production probability arises in the heterogeneous setting
(Proposition SA1) by analyzing the ρ̂(x) defined in Lemma SA1. We then present two examples exhibit-
ing the fragility and weakest link properties (Subsection SA5.3). Finally, we present numerical examples
and show that fragility is compatible with endogenous investment (Subsection SA5.3.5).

SA5.1. Generalization of the sharp transition in the heterogeneous case. To show the existence
of a discontinuity in ρ̂, we study the function along a single curve in x space. To this end we introduce
a single parameter ξ and define xif,j = xij(ξ), where xij are strictly increasing, differentiable, surjective
functions [0, 1]→ [0, 1] with xij(1) = 1.

Proposition SA1. Suppose that for all products i, the complexity mi is at least 2. Moreover, suppose
whenever j ∈ I(i), the number nij of potential suppliers for each firm is at least 1. For any product

i, the measure of the set of functional firms F i, denoted by ρi(ξ), is a nondecreasing function with the
following properties.

δ = 1 firms. Proceeding iteratively we assign all firms a depth. This allow a firm to source from other firms with different
depths but implies that a depth k firm source only from firms with depth less than k.
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(1) There is a number ξcrit and a vector rcrit > 0 such that ρ has a discontinuity at ξcrit, where it
jumps from 0 to rcrit and is strictly increasing in each component after that.

(2) If nij = 1 for all i and j, we have that ξcrit = 1.
(3) If ξcrit < 1, then as ξ approaches ξcrit from above, the derivative ρ′i(x) tends to ∞ in some

component.

The idea of this result is simple, and generalizes the graphical intuition of Figure 4 in Section 3.1.1
of the paper. For any r ∈ [0, 1]|I|, define Rξ(r) to be the probability, under the parameter ξ, that a
producer of product i is functional given that the reliability vector for producers of other products is
given by r. This can be written, using (SA-9), as

[Rξ(r)]i =
∏

j∈I(i)
[1− (1− rjxij(ξ))nij ] .

Near 0, the map Rξ : [0, 1]n → [0, 1]n is bounded above by a quadratic function (as a consequence of
mi ≥ 2 for all i). Therefore it cannot have any fixed points near 0. Thus, analogously to Figure 4 in the
main paper, fixed points disappear abruptly as ξ is reduced past a critical value ξcrit.

Proof of Proposition SA1. For any r ∈ [0, 1]|I|, define Rξ(r) to be the probability, under the parameter
ξ, that a producer of product i is functional given that the reliability vector for all products is given by
r. This can be written explicitly:

[Rξ(r)]i =
∏

j∈I(i)
[1− (1− rjxij(ξ))

nij ] .

Let ρ̂(ξ) be the elementwise largest fixed point of Rξ, which exists and corresponds to the mass of
functional firms by the same argument as in Lemma 2 in the main paper.

(1) It is clear that ρ̂(1) = 1.

(2) Next, there is an ε > 0 such that if ‖r‖ < ε, then for all ξ, the function Rξ(r) < r elementwise.
So there are no fixed points near 0.

(3) For small enough ξ, the function Rξ is uniformly small, so ρ̂(ξ) = 0.

These facts together imply that ρ̂ has a discontinuity where it jumps up from 0. Let ξcrit be the
infimum of the ξ where ρ̂(ξ) 6= 0.

Define

Γ(Rξ(r)) = {(r,Rξ(r)) : r ∈ [0, 1]|I|}
to be the graph of the function. What we have just said corresponds to the fact that this graph intersects
the diagonal when ξ = ξcrit, but not for values ξ < ξcrit. Suppose now, toward a contradiction, that
the derivative δ(ξ) of ρ̂(ξ) is bounded in every coordinate as ξ ↓ ξcrit. Then, passing to a convergent
subsequence and using the smoothness of R, we find that the derivative δ(ξcrit) of ρ̂ is well-defined at
ξ = ξcrit. But that contradicts our earlier deduction that ρ̂ is discontinuous at ξcrit. �

This result shows that there are profiles x of relationship strengths where small reductions in strength
cause a discontinuous drop in reliability (in the limit model). We can define a correspondence ρ(x)
which is limit of the reliability functions12 ρ(x,µ(τ)) as τ → ∞. This is equal to ρ̂(x) except at the
discontinuities, where ρ̂(x) is multi-valued. Paralleling the case of homogeneous firms, this implies
the potential for endogeneous fragility. We show in Section SA5.3, via a numerical example, that this
potential is realized: fragile outcomes do indeed obtain (for an open set of parameters).

12Recall (SA-8.
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SA5.2. Proof of Proposition 5 (Weakest link). Here we prove Proposition 5 in the main text.

Part (i): Let P be a directed path of length T from node T to node i and denote product i by 1.
Consider a shock that decreases all relationship strengths, x′ < x elementwise, and thus makes r′1 = 0
by definition of i being critical, where the “prime” notation denotes the quantity after the shock.

If any product t+ 1 sources input t and r′t = 0, we have that

r′t+1 =
∏

l∈I(t+1)

(1− (1− x′t+1,lr
′
l)
nt+1,l)

= 0

since t ∈ I(t+ 1).

Since r′1 = 0, it then follows by induction that the production of all products t ∈ P will fail.

Part (ii): This follows immediately from Part (i) and the fact that i and j are in the same strongly
connected component ISC if and only if there is a directed path in the product dependence graph from
each product to the other. �

SA5.2.1. Endogenous investment. So far we have discussed only the mechanics of the model. Now we
explicitly model investment. For a firm if and an input j ∈ I(i), the cost of effort is cij(xif,j−xij). The
gross profit conditional on producing product i is gi(ri). Here gi is a product-specific function (which
can capture many different features of different product markets that affect their profitabilities) and ri is
the reliability of producers of product i. We work here with a reduced-form specification of gross profits,
and assume that all functions satisfy the same assumptions as their counterparts in the homogeneous
model. As before, shocks are modeled as reducing xij after investments have been made.

Investment decisions are made simultaneously by firms, knowing their product type i but ex ante of
depth realizations. Our solution concept is symmetric undominated equilibrium.

A full theoretical analysis of this model is beyond our scope, but in the following sections we show
numerically that fragility of the type we have identified is consistent with equilibrium investment, and
illustrate the other phenomena that arise in the model with heterogeneities.

SA5.3. Examples with heterogeneities.

SA5.3.1. The mechanics of production. There are seven products. Only product a is used as an input
into its own production. Products a, b, c and d all use inputs from each other; products e, f , and
g also all use inputs from each other, but also require product a as an input. Figure 7 shows the
input dependencies between these products. There are two strongly connected components. Products
a, b, c, and d form a strongly connected component while e, f , and g form another strongly connected
component. Products a and b have three potential suppliers for each of their required inputs, while all
other products have only two potential suppliers for each of their required inputs.

SA5.3.2. Implications for criticality. We can begin with some general observations that do not depend
on any primitives beyond what has been described. By Proposition 5(ii), products within a strongly
connected component must be all critical or all non-critical. By Proposition 5(i), if a given product is
critical, all products that source this product directly or indirectly must also be critical. Combining these
results, there are just three possibilities: no products are critical; only products e, f, g are critical; all
products are critical. Note that it is impossible for products a, b, c, and d to be critical while products
e, f , and g are non-critical. The reason is that if production of product a fails, then the e, f and g
producers will be not be able to source all the inputs they need, and so will also be unable to produce.
On the other hand, note that production of the a, b ,c and d products does not require sourcing any of
the e, f , g products, so we can have the e, f, g products be critical while the a, b, c, d products are not.
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Figure 7. Supply dependencies: Bidirectional arrows represent reciprocated supply dependencies

in which both products require inputs from each other. A red one-directional arrow from one product
to another means that the product at the origin of the arrow uses as an input the product at the end
of the arrow (e.g. product e requires product a as an input, but not the other way around). Product a

also depends on itself, reflected by the loop. Note that a, b, c, d form a strongly connected component
while e, f, g form another strongly connected component.

SA5.3.3. An outcome at which a strict subset of firms is critical: Mechanics. The system r = R(r) can
be written as, for all i

ri =
∏

j∈I(i)
(1− (1− xijrj)nij ).

Here I(i) is the neighborhood of i on the product dependency graph, with |I(i)| = mi (the complexity
of production for product i), and nij is the number of potential suppliers a producer of product i has
for input j (i.e. the potential level of multisourcing by producers of product i for input j).

We will now exhibit a point (x, r) at which products {a, b, c, d} are critical in the limit model (and
thus for large enough depths).13 An entry xij in the following matrix represents the strength chosen by
a producer of product i in a relationship sourcing input j.

x =




a b c d e f g

a 0.8873 0.8872 0.9315 0.9385 0 0 0
b 0.8773 0 0.9204 0.9272 0 0 0
c 0.8673 0.8672 0 0.9084 0 0 0
d 0.8573 0.8572 0.8915 0 0 0 0
e 0.7573 0 0 0 0 0.9726 0.9783
f 0.7473 0 0 0 0.9464 0 0.9572
g 0.7373 0 0 0 0.9265 0.9317 0




. (SA-10)

The product reliabilities r are as follows:

r = [0.9926, 0.9928, 0.9387, 0.9307, 0.5384, 0.5262, 0.5145]. (SA-11)

For this configuration, products e, f and g are critical, while a, b, c, and d are noncritical. To see this,
we consider a small unanticipated shock to the relationship strengths x (e.g., we reduce all entries of x
by a small δ). For firms producing products a, b, c or d, the impact of this is minor. The probability of
successful production for those products (ri) only drops continuously and for a small shock the change
will be small. On the other hand, the small shock is sufficient for the output of the firms producing
products e, f and g to collapse to 0. This can be seen by iteratively applying R after the small shock.

SA5.3.4. An outcome at which a strict subset of firms is critical: Endogenous investment. We now specify
(heterogeneous) cost and profit functions that support the outcome described above as an equilibrium.
Specifically, we let the gross profit function of a firm producing product i be

gi(ri) = αi(1− ri),
where

α = [2857.4, 2456.1, 53.5, 43.9, 5.8, 5.5, 5.1].

We let the cost of a producer of product i from investing in supplier relationships with producers of
product j be

cij(xij − xij) =
1

2
γijx

2
ij .

For simplicity, we have set xij = 0 and we set γij = 1 for all product pairs ij.

13At the end of SA5.3 we describe how this example was generated.
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As we have mentioned, we consider symmetric equilibria, in the sense that all producers of product i
invest the same amount sourcing a given input j. As we are interested in these symmetric investment
choices, we dispense with the subscript f when we consider investments. In such an equilibrium the
profit of a producer of product i is given by

Πi = gi(ri)ri −
1

2

∑

j∈I(i)
γijx

2
ij , (SA-12)

From these specifications, it can be checked numerically that the xij in (SA-10) maximize the profit
function given the levels of reliability in (SA-11). Our discussion below will show how the parameters,
by construction, satisfy the first-order conditions of agents’ optimization problems.

SA5.3.5. Finding a critical outcome. We now describe how we reduced the search for an example to a
simple numerical problem.

The marginal benefit a producer of product i receives from investing in its relationships with suppliers
of input j is

MBij = gi(ri)
∏

l∈I(i),l 6=j
(1− (1− xilrl)nil)nij(1− xijrj)nij−1rj . (SA-13)

The marginal cost for a producer of product i investing in a relationship with a supplier of input j is

MCij = xij . (SA-14)

We look for |I| × |I| matrix x (i.e., the matrix containing the investment profiles for all products),
with entries xij satisfying MBij = MCij , along with parameters α supporting this outcome. We will
view the α as free parameters to be chosen in our search.

Fix a conjectured ř ∈ R|I| (we begin with the vector of ones) and arbitrary xi1 ∈ (0, 1) for all i ∈ I.
The value of xi1 that equates the marginal benefits and marginal costs for a producer of product i’s
investment into sourcing product 1 is increasing in gi(ri) = αi(1 − ři), and covers the [0, 1] interval as
αi varies. We can thus choose the free parameter αi to achieve the desired xi1 ∈ (0, 1). We claim that
the choice of xi1 for all i and ř then pins down the value of xij for all j 6= 1 in any best-response profile,
as follows. We must have

MBij
MBi1

=
MCij
MCi1

, for all i, j

which can be expressed as

gi(ři)
∏
l∈I(i),l 6=j(1− (1− xilřl)nil)nij(1− xij řj)nij−1řj

gi(ři)
∏
l∈I(i),l 6=1(1− (1− xilřl)nil)ni1(1− xi1ř1)ni1−1ř1

=
xij
xi1

,

and reduces to
(1− xij řj)nij−1

(1− (1− xij řj)nij )
nij
xij

=
ni1
xi1

ř1
řj

(1− xi1ř1)ni1−1

(1− (1− xi1ř1)ni1)
. (SA-15)

The left-hand side is decreasing in xij while the right-hand side is given, so there can be only one solution
xij satisfying the above.

Setting expressions (SA-13) and (SA-14) equal to each other implies a value for gi(ri) for all i 6= 1.
Recall that gi(ri) = αi(1− ri), and so depends on αi. Thus, for a given value of gi(ri) we set

αi =
gi(ři)

1− ři
.

This, along with our calculations above, ensures that all firms satisfy their first-order conditions for
investment at reliabilties ř.

Now we describe the procedure that we use to search for an equilibrium where some products are
critical.

• Initialize (xi1)i∈I to values just smaller than 1 and decrease these values incrementally by a
small amount along an arbitrary strictly decreasing curve.14

• For each (xi1)i∈I , repeat . . .
– calculate the entire x matrix using the above procedure;

14We chose the curve to find an example where one component of the network becomes critical before the whole network
becomes critical.
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– update the conjectured reliabilities by updating ř ← ρ̂(x).
. . . until ‖ρ̂(x)− ř‖ is within a desired tolerance of 0.

• Move on to the next (xi1)i∈I .

We continue until the probability of successful production decreases to 0 for one of the products i. We
then look at the (xi1)i∈I just before this has happened. This gives us a value of x (i.e., the investment
profiles for all products) such that, for any given shock magnitude, at least one product has reliability
0 after the shock.

As we have discussed, the equations above give us parameters such that the first-order conditions for
optimality hold. We can then check for global optimality numerically.

The above algorithm helped us find (αcrit,xcrit, rcrit) together constituting an equilibrium in the
infinite-depth model, corresponding to ρ̂ in Section SA5.1. In the finite-depth version of the model, the
only difference is that ρ̂(x) should be replaced by ρ(x,µ) for deep15 µ. On the part of ρ̂(x) visited by
the algorithm, the finite-depth reliability and best-response functions converge to ρ̂(x) pointwise (and,
by a compactness argument, therefore uniformly). It follows that the computations of the finite-depth
algorithm converge uniformly to the ones defined here, under a standard nonsingularity condition at the
equilibrium which can be checked numerically.16

SA5.3.6. A different set of critical products. As we have mentioned, there are essentially two types of
equilibria with fragile firms. If a firm in the set {e, f, g} becomes critical first, then all firms in this set
simultaneously become critical, but not necessarily the others. This is the case we have seen above.

When a firm in the set {a, b, c, d} becomes fragile first, a shock to any one of {a, b, c, d} that reduces
the reliability of sourcing an input is sufficient for the probability of successful production of all firms
to fall to 0.

To illustrate the latter possibility, We adjust the configuration of the previous example by letting the
vector of product profitabilities be

α = [32.46, 45.37, 8.52, 9.24, 21.78, 24.62, 28.00].

Everything else remains the same as before.

The equilibrium investment levels are reported in the matrix x below.

x =




0.7965 0.7792 0.8735 0.8663 0 0 0
0.8065 0 0.8859 0.8785 0 0 0
0.8165 0.8029 0 0.8681 0 0 0
0.8265 0.8124 0.8855 0 0 0 0
0.8965 0 0 0 0 0.8947 0.8894
0.9065 0 0 0 0.9103 0 0.8992
0.9165 0 0 0 0.9204 0.9146 0




.

The reliabilities are as follows

r = [0.8837, 0.9132, 0.7653, 0.7756, 0.8778, 0.8865, 0.8951].

This example is constructed analogously to the previous one, just tuning the starting point to reach
a different critical outcome. Indeed, at these parameter values production of all products is now critical.
Following a small shock to relationship strengths x (again, we reduce all relationship strengths a little)
reliability of all products collapses to 0.

15We can each product’s suppliers’ depths to be drawn from a Poisson distribution with mean τ just for concreteness and
let τ →∞.
16Intuitively, paralleling the illustration of Theorem 1, the condition is that the equilibrium is not at a point where the
two curves are tangent.
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SA6. Interpretation of investment

SA6.1. Effort on both the extensive and intensive margins. This section supports the claims
made in Section 6.2.1 of the paper that our model is easily extended to allow firms to make separate
multi-sourcing effort choices on the intensive margin (quality of relationships) and the extensive margin
(finding potential suppliers).

Suppose a firm if chooses efforts êif ≥ 0 on the extensive margin and effort ẽif ≥ 0 on the intensive
margin, and suppose that xif = h(êif , ẽif ). Let the cost of investment be a function of êif + ẽif instead
of yif . This firm problem can be broken down into choosing an overall effort level eif = êif+ẽif and then
a share of this effort level allocated to the intensive margin, with the remaining share allocated to the
extensive margin. Fixing an effort level e, a firm will choose êif ∈ [0, e], with ẽif = e− êif , to maximize
xif . Let ê∗if (e) and ẽ∗if (e) = e− ê∗if (e) denote the allocation of effort across the intensive and extensive

margins that maximizes xif given overall effort e. Given these choices, define h∗(e) := h(ê∗if (e), ẽ∗if (e)).
As h∗ is strictly increasing in e, choosing e is then equivalent to choosing xif directly, with a cost of
effort equal to c(h∗−1(e)). Thus, as long as the cost function ĉ(e) := c(h∗−1(e)) continues to satisfy our
maintained assumptions on c, everything goes through unaffected.

SA6.2. A richer extensive margin model. In the previous subsection we gave an extensive margin
search effort interpretation of xif . In some ways this interpretation was restrictive. Specifically, it
required there to be exactly n suppliers capable for supplying the input and that each such supplier be
found independently with probability xif . This alternative interpretation is a minimal departure from
the intensive margin interpretation, which is why we gave it. However, it is also possible, through a
change of variables, to see that our model encompasses a more general and standard search interpretation.

Fixing the environment a firms faces, specifically the probability other firms successfully produce
r > 0 and a parameter n that will index the ease of search, suppose we let each firm if choose directly
the probability that, through search, it finds an input of given type. When r = 0 we suppose that all
search is futile and that firms necessarily choose x̂if = 0. Denote the probability firm if finds a supplier
of a given input type by x̂if . Conditional on finding an input, we let it be successfully sourced with
probability 1 so all frictions occur through the search process. Implicitly, obtaining a probability x̂if
requires search effort, and we suppose that cost of achieving probability x̂if is ĉ(x̂), where ĉ is a strictly
increasing function with ĉ(0) = 0.

We suppose firms choose x̂if taking the environment as given. In particular, firms take as given
the probability that suppliers of the inputs they require successfully produce. When many potential
suppliers of an input produce successfully we let it be relatively easy to find one, and if none of these
suppliers produce successfully then it is impossible to find one. In addition, the parameter n shifts how
easy it is to find a supplier.

Given this set up we can let the probability of finding a supplier have the functional form x̂ :=

1− (1− xifr)n, and the cost of achieving this probability be given by ĉ(x̂) := c
(

1−(1−x̂)1/n
r

)
. Although

these functional form assumptions might seem restrictive, we still have freedom to use any function c
satisfying our maintained assumptions. This degree of freedom is enough for the model to be quite
general as all that matters is the size of the benefits of search effort relative to its cost, and not the
absolute magnitudes. Further, these functional form assumptions satisfy all the desiderata we set out
above. As 1− (1−xifr)n is the key probability throughout our analysis, all our results then go through
with this interpretation.
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