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1 Introduction

The structure of social networks affects the functioning of a society and an

economy in essential ways, especially when it comes to the flow of information

and the dynamics of behaviors. Models of processes and games that take

place on a network relate network structure to outcomes. Given a complete

description of the network, such models can make precise, testable predictions

about quantities of interest. For example, DeGroot’s (1974) model of repeated

linear updating of beliefs or behaviors fully specifies the dynamics of outcomes

given a network structure and initial conditions.1

However, networks are inherently complicated objects, and so from both a

conceptual and empirical perspective it is desirable to have results in terms of

statistics that are lower-dimensional, more interpretable, and easier to estimate

than the full structure of a network. Therefore, researchers often model a

network as some sort of random graph described by a relatively small number

of parameters – ideally, ones that are substantively meaningful and can be

estimated. Then the behavior of interest can be related to these parameters

rather than the full network structure, potentially yielding more insight and

more empirical traction.

This raises an important question about how well a model of random net-

works proxies for an actual network when a behavior happening on the network

is analyzed. In particular, we know that any model of networks must miss some

characteristics of a real network, and thus we need to check that if we calcu-

late the dynamics of a process of interest on the modeled network, they are

similar to simulations of the process on a real-world network. In this paper we

investigate that question in the context of a specific but important behavioral

1The essence of the DeGroot model is that nodes in a network update their states by
taking averages of the states of their neighbors. This model was first discussed by French
(1956) and Harary (1959), and later presented in its general form by DeGroot (1974). Exam-
ples of analysis of the dynamics include DeMarzo, Vayanos, and Zwiebel (2003); Golub and
Jackson (2010); and Jadbabaie and Tahbaz-Salehi (2010) within a literature in engineering
and control. Some recent work, including Jadbabaie et al. (2012) and Mueller-Frank (2012),
studies how the dynamics can differ when updating rules are more intricate than pure lin-
ear updating but still have an averaging aspect. Empirical investigations of such updating
processes are offered by Chandrasekhar, Larreguy, and Xandri (2010) and by Corazzini et
al. (2011). Some discussion of other related literature is provided in Jackson (2008).
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process and class of random networks.

In particular, we consider a multi-type random network model, a variation

of standard stochastic block models, that was used by Golub and Jackson

(2012a) as a foundation upon which to study a learning and updating process.

In that random network model, a society consists of an arbitrary number of

groups, or types, each making up an arbitrary fraction of society. A link

forms between two agents with a probability that is determined by the exoge-

nously defined types (e.g., demographic characteristics) of both of the agents

involved; links are conditionally independent given these type-based proba-

bilities. In this setting, Golub and Jackson (2012a) examined the DeGroot

updating process and specifically the persistence of disagreement (formally

defined by a measure we call consensus time). We showed that consensus time

is characterized in terms of a certain measure of segregation, called spectral

homophily, that depends only on large-scale linking patterns among groups,

and (with high probability) not on idiosyncratic details of network realizations.

Essentially, the spectral homophily measures the extent to which agents of a

given type are biased toward forming links with other, similar types.2 This

quantity can be estimated by taking a small sample of agents and considering

relative frequencies of links: for example, how many Asian friends an Asian

high school student tends to have for every white friend.

The usefulness of such results depends on whether the DeGroot process

operating on actual networks acts similarly to the DeGroot process on the

multi-type random graph model. In addition, the results are of practical in-

terest only if agent “types” that determine linking probabilities are qualities

that can be observed by researchers. More generally, whenever a potentially

complicated characterization of behavior in a network is reduced to a simple

invariant that can be estimated using a few large-scale parameters, there is a

question of whether the assumptions underlying that reduction are valid for

the data in question.

With this in mind, we examine social networks from over eighty different

high school friendship networks from the National Longitudinal Study of Ado-

2See also Golub and Jackson (2012b) for discussion of a related measure of homophily
defined in terms of the structure of the network.
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lescent Health (Add Health3). Given full network data, we are able to simulate

a DeGroot updating process on the actual networks and calculate worst-case

consensus times. In addition to full network data, we have the grade in school,

sex, and race of each student in each network. The networks exhibit variation

in numbers of nodes, density of links, and homophily. As a result, we are

able to check whether the predictions of our theorems hold – that is, whether

consensus time depends on a global measure of homophily from the multi-

type random graph model. We should expect this to be the case only if the

multi-type random graph model, with the types defined by the demographic

attributes available in the data, captures essentials of the structure of actual

networks – at least the ones that matter for (DeGroot) belief updating.

Since we do not employ data on a real-world process of communication, our

exercise does not test whether learning in reality follows an average-based pro-

cess4. However, it does test whether the multi-type random network captures

some aspect of social network structure, since otherwise there is little reason

to expect the theoretical predictions to hold even on simulated communication

processes.

We find that the speeds of linear updating processes depend on homophily

in ways that are consistent with the theory. Indeed, variation in spectral ho-

mophily based on simple observed attributes predicts more than half of the

variation in consensus times observed in the data. In view of this, we conclude

that the multi-type random graph model based on grade-sex-race types cap-

tures some of the important aspects of the real social network structures, at

least for purposes of studying linear updating processes. From a substantive

perspective, a simple calculation of consensus time based on group-level link-

ing tendencies can, in some settings, be a good predictor of the communication

dynamics arising from potentially intricate micro-level patterns.

3Add Health is a program project designed by J. Richard Udry, Peter S. Bearman, and
Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the National Insti-
tute of Child Health and Human Development, with cooperative funding from 17 other
agencies. Persons interested in obtaining data files from Add Health should contact Add
Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524
(addhealth@unc.edu).

4See Chandrasekhar, Larreguy, and Xandri (2010) and Corazzini et al. (2011) for analyses
in that direction.
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2 The Model

We work with a simple model of network structure that allows for arbitrary

large-scale patterns of interaction among groups, while making individual

(stochastic) link realizations independent conditional on the types of agents

involved. We provide an abbreviated description that is based on Golub and

Jackson (2012a), and refer the reader to that paper for more detail.

2.1 Multi-Type Random Networks

Given a set of n nodes N = {1, . . . , n}, a network is represented via its ad-

jacency matrix: a symmetric n-by-n matrix A with entries in {0, 1}. The

interpretation is that Aij = Aji = 1 indicates that nodes i and j are linked,

and the symmetry restricts attention to undirected networks.

Let di(A) =
∑n

j=1Aij denote the degree (number of links) of node i, the

basic measure of how connected a node is. Let d(A) denote average degree

(arithmetic mean). Finally, let

D(A) =
∑
i

di(A)

be the sum of all degrees in the network, which is twice the total number of

links.

Agents or nodes have “types,” which are the distinguishing features that

affect their propensities to connect to each other. Types might be based on

any characteristics that influence agents’ probabilities of linking to each other,

including age, race, gender, profession, education level, and even behaviors.5

For instance, a type might consist of the eighteen-year-old female African-

Americans who have completed high school, live in a particular neighborhood,

and do not smoke. The model is quite general in that a type can embody

arbitrary lists of characteristics; which characteristics are included will depend

on the application. There are m different types in the society. Let Nk ⊂ N

denote the set of nodes of type k, so the society is partitioned into the m

5However, we do not allow types to depend on behaviors or beliefs that are endogenous
to the updating being modeled.
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groups (N1, . . . , Nm). Let nk = |Nk| denote the size of group k; denote by

n = (n1, . . . , nm) the corresponding vector of cardinalities; and let n denote

the total number of agents.

A multi-type random network is defined by the cardinality vector n together

with a symmetric m-by-m matrix P, whose entries (in [0, 1]) describe the

probabilities of links between various types.6 The resulting random network is

captured via its adjacency matrix, which is denoted by A(P,n).7 In particular,

A(P,n) is built by letting the entries Aij with i > j be independent Bernoulli

random variables that take on a value of 1 with probability Pk` if i ∈ Nk and

j ∈ N`. That is, the entry Pk` captures the probability that an agent of type k

links to an agent of type `. We set Aii = 0 for all i, though our theorems hold

under any specification of the diagonal. The remaining entries of A(P,n) are

filled in by symmetry: Aij = Aji. Unless otherwise noted, A(P,n) denotes

a random matrix, and A without an argument refers to a given deterministic

matrix.8

The multi-type random network model is a standard stochastic block model

(e.g., see Jackson, 2008, for references) and subsumes many other random net-

work models. The seminal random network model of Erdős and Rényi is a

special case, as are many cases of the Chung and Lu (2002) model based on

degree distributions.9 One can also view the probabilities in the matrix P

as arising from distances between some underlying locations, either physical

6We assume a numbering of agents such that N1 = {1, 2, . . . , n1}, N2 = {n1 + 1, n1 +
2, . . . , n1 +n2}, and so on. Given this convention, it is possible to recover the partition from
just the vector n.

7This kind of stochastic network with type-dependent heterogeneity can arise from a
strategic friendship formation process with some randomness in the order of meetings, as in
Currarini, Jackson, and Pin (2009).

8For individual entries, we drop the arguments (P,n), but the matrix in question will be
clear from context.

9This can also be seen as a cousin of some of the statistical models that have been used
to capture homophily in networks, such as some p∗ and exponential random graph models
(e.g., see the references and discussion in Jackson, 2008). There are variations on it in
the computer science literature: e.g., the planted multi-section model of McSherry (2001).
An early version of this type of model was introduced by Diaconis and Freedman (1981)
in a study on the psychology of vision, independently of its introduction in the stochastic
block modeling literature (e.g., Fienberg and Wasserman, 1981, and Holland, Laskey, and
Leinhart, 1983), which provided a basis for some of the community detection literature, e.g.,
Copic, Jackson, and Kirman (2009).
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or abstract. While the model as presented restricts locations to be discrete,

it would be feasible to permit a continuous specification. One can even in-

clude different sociabilities, so that some groups consist of individuals who,

for whatever reasons, form more relationships on average than others. Thus,

it need not be that all nodes have the same expected number of connections;

the network can have a nontrivial degree distribution.10

2.2 A General Measure of Homophily

We now provide a general definition of homophily based on the probabilities of

interaction between various types, and then show how it works in an important

special case.

Let Qk`(P,n) = nkn`Pk` be the expected total contribution to the sum of

degrees of agents of type k from links with agents of type `; when k 6= `, this is

simply the expected number of links between k and `. Also, let dk(Q(P,n)) =∑
`Qk`(P,n) be the expected sum of degrees of nodes of type k.

Let F(P,n) be a matrix of the same dimensions as P with entries

Fk`(P,n) =
Qk`(P,n)

dk(Q(P,n))
. (1)

(We take 0/0 = 0 throughout the paper.) Thus, the quantity Fk` is the

expected number of links a node of type k will have with nodes of type `,

divided by the expected degree of a node of type k. This simplifies things

in two respects relative to the realized random network. First, it works with

groups (or representative agents of each type) rather than individual nodes;

and second, it works with ratios of expected numbers of links rather than

realized numbers of links. With this matrix defined, we can formulate a general

homophily measure.

Definition 1. The spectral homophily of a multi-type random network (P,n)

is the second-largest eigenvalue11 of F(P,n). We denote it by hspec(P,n).

10There are, of course, networks that this approach is not well-suited to modeling: strict
hierarchies, perfect regular lattices, etc., even though homophily can occur in these networks.

11As shown in Golub and Jackson (2012a, footnote 15), all eigenvalues of F(P,n) are
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The spectral homophily measure is based on: (i) simplifying the overall

interaction matrix to that of the expected interaction across groups, and (ii)

then looking at a particular part of the spectrum of that matrix: the second-

largest eigenvalue. On an intuitive level, a second-largest eigenvalue captures

the extent to which a matrix can be broken into two blocks with relatively

little interaction across the blocks. Indeed, in Section VI of Golub and Jackson

(2012a), we present a formal result showing that spectral homophily picks up

“fault lines” created by segregation in the network. In the next section, we

illustrate this in the context of a special case.

2.3 A Special Case: The Islands Model

For an illustration of the general definitions, it is useful to consider a situation

in which groups are equal-sized and they are all biased in the same way. In

particular, links within a type are more probable than links across types, and

the probability of a link across types does not depend on the specifics of the

types in question. This is a case that we call the “islands” model.

More precisely, the islands model is the special case of the multi-type ran-

dom networks model such that (i) each type (group) has the same number of

agents; and (ii) an agent only distinguishes between agents of one’s own type

and agents of a different type. Moreover, all agents are symmetric in how

they do this. Formally, in the multi-type random network notation, we say

the multi-type random network (P,n) is an islands network with parameters

(m, ps, pd) if:

• there are m groups (islands) and their sizes, nk, are equal for all k;

• Pkk = ps for all k; and

• Pk` = pd for all k 6= `, where pd ≤ ps and ps > 0.

real. To define the second-largest eigenvalue, list the eigenvalues of this matrix ordered
from greatest to least by absolute value, with positive eigenvalues listed first if there are
ties. An eigenvalue is listed the same number of times as the number of linearly independent
eigenvectors it has. The second eigenvalue in the list is called the second-largest eigenvalue.
(Clearly, its magnitude does not depend on the tie-breaking assumption.)
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The idea that agents only distinguish between “same” and “different” agents

in terms of the linking probabilities is surprisingly accurate as a description of

some friendship patterns (e.g., see Marsden, 1987, and footnote 7 in McPher-

son, Smith-Lovin, and Cook, 2001).

Figure 1 depicts two different random networks generated by the islands

model, with different linking probabilities.

In the context of the islands model, it is easy to define homophily. Let

p =
ps + (m− 1)pd

m
(2)

be the average linking probability in the islands model (i.e., the probability

that two agents drawn uniformly at random are linked).

One natural measure of homophily then compares the difference between

same and different linking probabilities to the average linking probability, with

a normalization of dividing by the number of islands, m:

hislands(m, ps, pd) =
ps − pd
mp

. (3)

Note that this is equivalent12 to Coleman’s (1958) homophily index specialized

to the islands model:
ps
mp
− 1

m

1− 1
m

.

This is a measure of how much a group’s fraction of same-type links ( ps
mp

)

exceeds its population share (1/m), compared to how big this difference could

be (1− 1/m).

The measure hislands captures how much more probable a link to a node of

one’s own type is than a link to a node of any other type, and varies between

0 and 1, presuming that pd ≤ ps. If a node only links to same-type nodes

(so that pd = 0), then the average linking probability p becomes ps/m and so

hislands = 1, while if nodes do not pay attention to type when linking, then

ps = pd and hislands = 0. The purpose of the m in the denominator is to

12To see that islands homophily is equal to Coleman’s index, note that the latter can be
rewritten as ps−p

(m−1)p . From (2) it follows that ps − p = m−1
m (ps − pd); substituting verifies

the equivalence.
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(a) (b)

Figure 1: Islands networks with low and high homophily are shown in (a) and
(b), respectively.

restrict the variation of the measure exactly to the interval [0, 1] (under the

assumption that pd ≤ ps).

This simple measure of homophily introduced above is equal to the spectral

homophily, as shown in Golub and Jackson (2012a).

Proposition 1. If (P,n) is an islands network with parameters (m, ps, pd),

then

hislands(m, ps, pd) = hspec(P,n).

2.4 Average-Based Updating and its Speed

The processes that we focus on are ones where agents’ behaviors or beliefs

depend on an average of their neighbors’ behaviors or beliefs. Applications

include ones where agents dynamically and myopically best respond, trying to

match the average behavior of their neighbors, as in common specifications of

peer effects models13; the specification is also used in models of belief updating,

as discussed in the introduction.

13For recent examples in a network context, see Calvó-Armengol, Patacchini, and Zenou
(2009) and Bramoullé, Djebbari, and Fortin (2009).
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2.4.1 Definition

Average-based updating processes are described as follows. Given a network

A, let the matrix T(A) be defined by Tij(A) = Aij/di(A). Beginning with an

initial vector of states (typically behaviors or beliefs) b(0) ∈ [0, 1]n, agent i’s

state at date t ≥ 1 is simply

bi(t) =
∑
j

Tij(A)bj(t− 1).

That is, the agent matches the average of his or her neighbors’ last-period

states. In matrix form, this is written as:

b(t) = T(A)b(t− 1)

for t ≥ 1. It follows that

b(t) = T(A)tb(0).

2.4.2 Convergence

As long as the network is connected and satisfies a technical condition, the

process will converge to a limit in which there is a consensus – i.e., everyone

has the same behavior or belief.14 In the results below about random networks,

the assumptions ensure that the networks satisfy the conditions of the lemma

with a probability tending to one as n grows.15

Lemma 1. If A is connected and has at least one cycle of odd length16, then

T(A)t converges to a limit T(A)∞ such that (T(A)∞)ij =
dj(A)

D(A)
.

14If the communication network is directed, then convergence requires an aperiodicity
condition (the greatest common divisor of cycle lengths is 1) and works with a different
segmentation into components, but still holds quite generally, as discussed in Golub and
Jackson (2010).

15For example, Theorem 1 shows that under these assumptions, agents converge to within
a specified distance of consensus beliefs in the worst case, which could not happen if the
network were not connected.

16This is trivially satisfied if there is at least one i with Aii > 0.
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2.4.3 Measuring Speed: Consensus Time

Consider some network A and the linear updating process with the matrix

T(A). To measure how fast the process converges, we simply examine how

many periods are needed for the vector describing all agents’ behaviors or

beliefs to get within some distance ε of its limit. The measure of deviation

from consensus we use has a simple interpretation. At each period of updating,

there are twice as many “messages” sent as there are links in the network – two

messages across each link about each agent’s behavior or belief (one message

in each direction). Let m(t) be this vector of messages for some ordering of the

directed links. We define the distance from consensus at time t to be the root

mean square distance of m(t) from its limit m(∞). For the network A and

starting beliefs b, we denote this distance (the consensus distance) at time t

by CD(t; A,b).

This measurement of distance between messages corresponds to a weighted

version of the usual `2 norm. More specifically, given two vectors of beliefs v

and u and a vector of weights w, define ‖v− u‖w = [
∑

iwi(vi − ui)2]1/2 . The

distance of beliefs at time t from consensus is then

CD(t; A,b) = ‖T(A)tb−T(A)∞b‖s(A),

where we use the weights s(A) defined by

s(A) =

(
d1(A)

D(A)
, . . . ,

dn(A)

D(A)

)
.

In other words, ‖T(A)tb − T(A)∞b‖2s(A) is a weighted sum of differences

between current beliefs and eventual beliefs, with agent i’s term weighted by

his or her relative degree. This is equivalent to the “messages” interpretation

because an agent with degree di(A) sends a share of the messages in the

network given exactly by si(A) = di(A)
D(A)

.

Then the consensus time is the time it takes for this distance to get below

ε, for the worst-case initial beliefs17:

17Golub and Jackson (2012a) discusses the particulars of this definition in detail.
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Definition 2. The consensus time to ε > 0 of a connected network A is

CT(ε; A) = sup
b∈[0,1]n

min{t : CD(t; A,b) < ε}.

3 The Theory Being Tested

A few definitions and notations are needed before stating the main theoretical

result that we are testing. Throughout the section, we consider sequences of

multi-type random networks, with all quantities (e.g., the matrix of intergroup

linking probabilities P and the vector of group sizes n) indexed by the overall

population size, n. We generally omit the explicit indexing by n to avoid

clutter.

The next definition catalogs several regularity conditions on a sequence of

multi-type random networks which will be assumed in the theorem.

Definition 3.

1. A sequence of multi-type random networks is sufficiently dense if the

ratio of the minimum expected degree to log2 n tends to infinity. That

is:
mink dk(Q(P,n))

log2 n
→∞.

2. A sequence of multi-type random networks has no vanishing groups if

lim inf
n

min
k

nk

n
> 0.

3. A sequence of multi-type random networks has interior homophily if

0 < lim inf
n

hspec(P,n) ≤ lim sup
n

hspec(P,n) < 1.

4. Let P denote the smallest nonzero entry of P and P denote the largest

nonzero entry. A sequence of multi-type random networks has compara-

ble densities if:

0 < lim inf
n

P/P ≤ lim sup
n

P/P <∞.
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The sufficient-density condition ensures that with a probability tending

to one, all nodes will be path-connected to each other.18 The no-vanishing-

groups condition ensures that all groups have a positive share of the popu-

lation. The interior-homophily condition requires that homophily not grow

arbitrarily large or approach 0.19 Finally, the comparable-densities condition

ensures that positive interaction probabilities do not diverge arbitrarily: they

may be quite different, but their ratios must remain bounded.

The next definition is simply used to state the theorem’s conclusion com-

pactly:

Definition 4. Given two sequences of random variables x(n) and y(n), we

write x(n) ≈ y(n) to denote that for any ε > 0, if n is large enough, then

(2 + ε)−1y(n) ≤ x(n) ≤ (2 + ε)y(n)

holds with probability at least 1− ε.

In other words, x(n) ≈ y(n) indicates that the two (random) expressions

x(n) and y(n) are within a factor of 2 (with a vanishingly small amount of

slack) for large enough n with a probability going to 1.20

With these preliminaries, we can state a result from Golub and Jackson

(2012a):

Theorem 1. Consider a sequence of multi-type random networks satisfying

the conditions in Definition 3. Then, for any γ > 0:

CT
(γ
n

; A(P,n)
)
≈ log(n)

log(1/|hspec(P,n)|)
.

18The minimum needed for the network to be connected with high probability is for the
degrees to grow faster than log n. The condition here is a little stronger than this, and turns
out to be what is needed to prove the tight asymptotic characterizations of convergence
time we are about to present.

19The case of no homophily is dealt with in detail in Chung et al. (2004), and the case
of homophily approaching 1 may lead the network to become disconnected, in which case
there can be no convergence at all.

20Note that the relation ≈ is symmetric. In Golub and Jackson (2012a), we used a slightly
different definition. None of the results of that paper depend on which definition is used.
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This result says that the speed of convergence of an average-based updating

process is approximately proportional to log(1/|hspec(P,n)|). Moreover, the

speed of the process essentially depends only on population size and homophily.

The approximation for consensus time on the right-hand side is always within

a factor of two of the true consensus time. Properties of the network other

than spectral homophily can change the consensus time by at most a factor of

two relative to the prediction made based on spectral homophily alone.

In the case of the islands model, the result has a simple corollary in view

of Proposition 1 in Section 2.3:

Corollary 1. Consider a sequence of islands networks satisfying the condi-

tions in Definition 3. Then, for any γ > 0:

CT
(γ
n

; A(P,n)
)
≈ log(n)

log(1/|hislands(m, ps, pd)|)
=

log(n)

log
∣∣∣ mp
ps−pd

∣∣∣ .
4 The Empirical Analysis

With theoretical predictions of consensus time based on the multi-type random

networks model in hand, we now compare those predictions to consensus times

that obtain when the process is simulated on actual networks. In particular,

we examine consensus times in 84 social networks from the Adolescent Health

dataset and show how the patterns in those data illustrate our conclusions.

4.1 Data Description

The network data are from the in-school questionnaire of the 1994–95 Wave I

of the Add Health study. Overall, 90,118 students took this survey. The par-

ticular data analyzed here come from a subsample of the 84 US high schools21

that had at least a fifty percent response rate. The overall sample of schools

was chosen by systematic sampling methods and implicit stratification, with

21In some cases a high school is paired with a “sister” middle school in the same commu-
nity, and the students in the sister school are also included in the network.
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the goal of making the sample representative of US schools with respect to

region of country, urbanicity, school size, school type, and ethnicity.22

The data include information regarding each student’s grade, gender and

race. Grade is the year in school, ranging from 6 to 12. Race is self-reported as

Asian, black, Hispanic, white, or other (with occasional missing data). Sex is

self-reported as male or female. In addition, each student was asked to name

his or her closest male and female friends.23 Using the reported friendship

networks (linking two individuals if either named the other as a friend) yields

the social networks. For each community, our analysis focuses on the largest

connected component of the network.

We remove two networks due to convergence issues (as discussed in detail

below). Ultimately, our analysis was performed on 82 connected networks,

containing a total of 48,065 students (an average of 586 students per network,

with a standard deviation of 426).

4.2 What Can the Data Tell Us?

Given the demographic data, we can compute homophilies for various defini-

tions of types. We measure consensus times by simulating the DeGroot process

and directly computing them in the sampled social networks.24 In view of this,

it is worth re-emhasizing the purpose of the empirical exercise. There are ac-

22Much more information about the Add Health study design can be found in Harris et al.
(2009).

23The number of friends reported was capped at five of each sex. Fewer than ten percent
of the students hit the caps, but that still censors the data. This design feature makes
homophilies computed based on sex somewhat less reliable than the others, since it would
tend to equalize the numbers of reported male and female friends, even if there were strong
homophily present.

24For any vector of initial beliefs, we can directly calculate how long it takes for beliefs
to converge to within a given distance of consensus when the DeGroot process occurs on a
particular real network. In principle, then, to compute consensus time, one simply needs to
search over starting beliefs. However, the space of potential starting beliefs is very large.
Fortunately, it is possible to use certain eigenvalues and eigenvectors of the updating matrix
T(A) to obtain theoretical bounds on the true consensus time and to make good guesses
about which initial belief vectors will make the time to converge as large as possible (for
the theoretical results along these lines, see the proof of Lemma 2 in Golub and Jackson,
2012a). With the guesses in hand as starting points, we then do Monte Carlo simulation to
estimate the true consensus time.
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tually three aspects to the full spectrum of the results in Golub and Jackson

(2012a) that could hypothetically be tested, depending on available data.

• First, there is a question of how well the multi-type random graph model

fits the data when only a few simple observed types are used. The

theoretical results are guaranteed to be verified, at least asymptotically,

if the real high school networks were actually generated from the multi-

type random graph model based on these simple types. The results may

not provide good approximations otherwise.

• Second, the results quoted above are asymptotic and there is a question

about whether our bounds on how consensus time relates to homophily

will be useful in finite networks of medium size.

• Third, there is a question of whether or not people actually update their

beliefs or behaviors in a way well-approximated by the average-based

updating model.

Our empirical analysis answers the first two questions in the affirmative,

and does not address the third question at all. In particular, the multi-type

random network model is a good fit for these social networks when it comes to

investigating consensus time, and gets a good deal of explanatory power from

very basic definitions of types. Our claim that the study of the convergence

of linear updating (or Markov) processes on large social networks can be re-

duced to simple computations about homophily is not merely an asymptotic,

theoretical claim, but one that holds up well when applied to the data.

Whether or not these models of updating and communication shed light

on actual social behavior – that is, on how people actually communicate and

choose in networks – is obviously an important question, but one that requires

additional (longitudinal) data and is left for future investigations.

4.3 Testing the Predictions

Our first step is to test the relationship in Theorem 1 between convergence

and homophily. We begin by rearranging the expressions in the theorem into
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an (inverted) form that compensates for the extreme behavior of the conver-

gence times at high homophilies and makes the quantities amenable to linear

regressions.

In particular, let

ρ(X) = exp

(
− log n

X

)
.

By Theorem 1, under the multi-type random network model, the quantity

ρ(CT(γ/n; A)) – which can be thought of loosely as an implied per-step rate

of convergence – is approximately hspec(P,n). To address the main empirical

question of the paper, we run regressions of ρ(CT(γ/n; A)) on the empirical

analogue of hspec(P,n) to see if the theoretical relationship holds up in the

data. The empirical analogue of hspec(P,n) is the second-largest eigenvalue of

F(P,n), with Qk` in the definition (equation 1) replaced by the actual total

contribution to the sum of degrees of group k arising from links with group `.

(When k and ` are different, this is simply the number of links between groups

k and `.) In defining types for this exercise, we begin with the finest definition

available in the data. Thus, we consider a “type” to be a specific combination

of race, grade, and sex: so, for instance, a type would be all female Asians in

grade 9. In a high school with two sexes, four races, and four grades, there are

32 types.

The regressions we present include an intercept term. This is not in Theo-

rem 1. However, it turns out that if there is additional homophily within each

type on dimensions not reported in the data, then there will be an intercept

term in the model. Other types of mismeasurement can cause the slope on

the homophily regressor to be different from 1. Some details regarding what

biases we might expect from using imperfect type specifications are worked

out for the case of the islands model in Section 4.4.

Lastly, we removed two data points whose consensus times exceeded our

algorithms’ capacity. These networks (schools number 53 and 57) had consen-

sus times on the order of several thousand, and computing them precisely was

infeasible. So, from now on, we work with the 82 data points excluding those

schools. Throughout the analysis, we set γ =
√

0.1 ≈ 0.32 in our computations

of CT(γ/n; A), which corresponds to the mean squared deviation of messages
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Table 1: Dependent variable = ρ(CT(γ/n; A))

(N = 82)

Variable Coefficient
(t-statistic)

Intercept 0.560
(13.9)

hspec 0.431
(9.41)

R2 0.525
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spectral homophily
Actual ρ(CT) Predicted ρ(CT)

Figure 2: The relationship between ρ(CT(γ/n; A)) and hspec(P,n) computed
based on the finest-grained type data available (i.e. a type is a grade-sex-race
tuple).
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Table 2: Dependent variable = ρ(CT(γ/n; A))

(N = 82)

Variable Coefficient
(t-statistic)

Intercept 0.870
(61.2)

hislands for full type 0.297
(4.91)

R2 0.231

from consensus being 0.1. The analysis does not appear to be sensitive to

reasonable variations of this parameter.

The results of the regression are presented in Table 1 and Figure 2. The

R2 shows that the spectral homophily among these types accounts for roughly

half of the variation in consensus times in the data. This is reasonably high

in view of the fact that many type characteristics that potentially affect net-

work formation – such as interests, extracurricular activities, socio-economic

background, etc. – are not included in these data.

Spectral homophily based solely on grade-sex-race types has the advantage

of explaining a large share of the variation in consensus times. However, since

its definition involves an eigenvalue of a matrix that might be reasonably large

(e.g., 32×32), it is worth asking whether we can predict consensus times using

a simpler, more hands-on quantity.

Thus, from now on we work in the context of the islands model (recall

Section 2.3). When the islands model applies, hspec in Theorem 1 can be

replaced by hislands, as done in Corollary 1. The latter homophily is defined in

terms of simple quantities – namely ps, p, and the number of islands.25 The

probabilities have obvious empirical analogues: the observed density of links26

within a type and overall.

We note an important caveat. In the high school data, the types (whether

defined by grade, sex, race, or combinations of these) will typically not have

25As discussed in Section 2.3, we can write hislands as (ps/p− 1)/(m− 1).
26That is, the number of actual links over the number of possible links.
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Figure 3: The relationship between ρ(CT(γ/n; A)) and hislands computed based
on the finest-grained type data available (i.e. a type is a race-grade-sex tuple).
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equal sizes. However, it turns out that by using the hislands formula despite

this imperfect correspondence of the data with the islands model, we can often

obtain reasonably good predictions of consensus time. Given that hislands has

an advantage over hspec in being simpler and more interpretable, we present

results for a specification in which we regress ρ(CT(γ/n; A)) on the empirical

analogue of hislands.

We present the results in Table 2 and Figure 3. In computing islands

homophily in this regression, we use the finest definition of type available in

the data in calculating the empirical ps. That is, two nodes are considered to

be the same type if they have the same grade, sex, and race. To set the total

number of types, m, we assume that there are two equally-sized racial groups

for each grade-sex combination. Thus, in a school that has both sexes and four

grades, there would be 16 islands. While this is not typically exactly equal

to the true number of distinct grade-sex-race tuples in the data, the largest

two racial groups are usually substantially larger than the others, so it is a

reasonable specification given that the islands model takes each type to be of

equal size.

We also explore how much of the variation in consensus times can be ex-

plained by even simpler definitions of types. For example, out of the three

demographic characteristics captured in the data, homophily based on grade

has the greatest variation. The grades also have approximately equal sizes

in most of the schools, so that it is particularly reasonable to use the formula

from the equal-sized islands model. Thus, we regress ρ(CT(γ/n; A)) on islands

homophily when types are defined by grade in school alone. The results are

reported in Table 3 and Figure 4.

The fit is similar in quality to that obtained from the finest definitions of

type under the islands model. Thus, under very coarse type specifications, con-

sensus time estimations from the multi-type random network model capture

significant amounts of variation in consensus time on actual networks.
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Table 3: Dependent variable = ρ(CT(γ/n; A))

(N = 82)

Variable Coefficient
(t-statistic)

Intercept 0.809
(32.6)

hislands for grade 0.209
(5.21)

R2 0.253
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Figure 4: The relationship between ρ(CT(γ/n; A)) and hislands when types are
defined based on grade in school only.
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4.4 Imperfect Type Classifications

While the regressions show that spectral homophily plays a large role in pre-

dicting simulated consensus times on real networks, there are some ways in

which the regressions depart from the predictions of the theory. According to

Theorem 1, the regressions should have an intercept of zero, but a nonzero

intercept term is quite clearly present. Moreover, the slope coefficient in each

regression appears to be different from 1, which is the slope we would expect

if the approximation for consensus time based on spectral homophily held

exactly.

We now show that such a discrepancy would be expected if the definition of

types were leaving some attributes out. To this end, we examine an enriched

model in which the econometrician imperfectly observes the types governing

network formation.

Consider the following elaboration of the islands model. We have m equally

sized islands N1, . . . , Nm and each such island Nk is divided into r equally sized

sub-islands Nk,1, . . . , Nk,r. If i and j are in different islands, then the linking

probability between them is pd. If i and j are in the same island, then the

linking probability depends on whether they are in the same sub-island, or in

different sub-islands. If they are in the same sub-island, then they are linked

with probability ps. And if they are in the same island but different sub-islands,

then they are linked with probability pb. We assume 0 < pd ≤ pb ≤ ps, and

that all link realizations are independent given the types of the nodes involved

(i.e., this is a special case of the multi-type random network model).

The idea is that the researcher has data on the islands but not the sub-

islands. For example, the special case where pb = pd is one where the researcher

has simply failed to disaggregate islands to the correct level.

We now show what happens if the homophily h is estimated as if the

data were generated by the islands model with islands N1, . . . , Nm and no

sub-islands, despite the fact that there really are sub-islands.

If, without knowing about the sub-islands, we estimate the probability of

same-type (i.e. same-island) nodes being linked, we are actually estimating
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the quantity

p̃s =
ps + (r − 1)pb

r
,

and our estimate of h will be

h̃ =
p̃s − pd
mp

,

where p and pd are presumed to be estimated correctly.

In this setting, it is not valid to apply Corollary 1 with the homophily com-

puted based on the misidentified island structure. Instead, hislands(m, ps, pd)

should be replaced by a consistent estimate of the spectral homophily hspec(P,n).

This spectral homophily is an affine function of h̃, and this is the content of

the following proposition.

Proposition 2. In the modified islands setting just described, if h̃ is the

regressor given above (computed without information about the sub-island

structure), then

hspec(P,n) = α + h̃,

where α = pd
mrp

.

The proof of this result appears in an appendix, Section 6. In running the

regressions, we do not make use of the details of the formula for α derived

in the proof. We merely note that there is an affine bias if there is some

homophily inside the islands on dimensions falling outside the scope of our

data. Thus, including an intercept in the regression of convergence rates on

h̃ is a reasonable first-order approximation to account for some of this affine

bias.

Another realistic situation is one in which the econometrician’s notion of

the island structure does not perfectly track the true islands N1, N2, . . . , Nm,

but instead involves (i) grouping together some agents who are not actually

in the same island for the purposes of network formation and (ii) separating

others who should in fact be grouped together. In this case, we conjecture

that, in regressions, one could obtain slope coefficients (on the mismeasured

homophily h̃) not equal to one. Essentially, this is because in computing h̃,

some truly intragroup density is classified as intergroup, and vice versa. The
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direction and magnitude of the distortion in the coefficient on h̃ depends on

the extent of each misclassification error. This might also explain why there

appears to be some nonlinearity in the data in Figure 3 when we use our finest

definition of types.

Of course, in more realistic settings, the various kinds of symmetry present

in this simple illustration with the islands model will not exist. However, it

appears that more general formulas or characterizations could be obtained

describing how homophilies at various levels interact. This could be a useful

direction to pursue in taking this model to other empirical settings, where

there will almost always be some underlying homophily on dimensions not

captured, or captured incorrectly, in the data.

5 Concluding Remarks

Various models of the structure of a network have been used as foundations to

analyze how social network properties affect behavior. Here we have initiated

an examination of whether a simulated process on actual networks matches

predictions that are made assuming the network structure model is correct.

This opens new questions for future research.

The first question is closely related to our technical results. An equivalent

way of stating the result of this paper is that we can predict DeGroot process

consensus times for actual networks by using the consensus time of an analo-

gous process running on a highly simplified network which takes into account

only the large-scale, group-level network properties.27 To what extent does

such a correspondence hold for properties other than consensus time, such as

the extent of disagreement between two particular groups in society after a

certain number of periods of updating? In Section IV of Golub and Jackson

(2012a), we show that, at least asymptotically as the network grows large, the

correspondence should hold for many other properties. Testing this class of

predictions using an approach similar to the one we have taken here presents

an avenue for future work.

More broadly, one can ask how well other probabilistic models of network

27Section IV of Golub and Jackson (2012a) formalizes this statement.
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structure perform in similar exercises. How does the answer change as we keep

the network model the same but vary the process occurring on the network?

Which models of behavior mimic actual behaviors – at least when it comes

to important aggregate statistics – and how does the answer to that question

depend on the types of networks in which the agents interact?

6 Appendix: Proof of Proposition 2

Here we prove Proposition 2.

Proof of Proposition 2: Letting Ek denote the k-by-k matrix of all ones

and Ik denote the k-by-k identity matrix, we find that with P specified as in

Section 4.4,

F(P,n) =
pdEmr + (pb − pd)Im ⊗ Er + (ps − (pb − pd))Imr

ps + (r − 1)pb + (m− 1)rpd
.

Now, the second eigenvalue of

pdEmr + (pb − pd)Im ⊗ Er

is r(pb − pd). Thus,

λ2(F(P,n)) =
r(pb − pd) + ps − (pb − pd)
ps + (r − 1)pb + (m− 1)rpd

.

This can be rewritten as

λ2(F(P,n)) =
rp̃s − (r − 1)pd

mrp

or

λ2(F(P,n)) = h̃+
pd
mrp

.

This completes the argument.

27



References
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