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We examine how the speed of learning and best-response processes depends
on homophily: the tendency of agents to associate disproportionately with those
having similar traits. When agents’ beliefs or behaviors are developed by aver-
aging what they see among their neighbors, then convergence to a consensus
is slowed by the presence of homophily but is not influenced by network density
(in contrast to other network processes that depend on shortest paths). In deriving
these results, we propose a new, general measure of homophily based on the
relative frequencies of interactions among different groups. An application to
communication in a society before a vote shows how the time it takes for the
vote to correctly aggregate information depends on the homophily and the initial
information distribution. JEL Codes: D83, D85, 121, J15, Z13

I. INTRODUCTION

There are pronounced disagreements in society about factual
issues. In October 2004, 47% of Republican poll respondents
believed that Iraq had weapons of mass destruction just before
the 2003 invasion of that country, as opposed to only 9% of
Democrats. These disagreements can be highly persistent.
Sixteen months later, in March 2006, the percentages had
changed to 41% for Republicans and 7% for Democrats.’ This
kind of disagreement occurs on many other important factual
questions—for instance, whether temperatures on Earth are
increasing over time.?
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1. The polling data appear in “Iraq: The Separate Realities of Republicans and
Democrats” World Public Opinion (2006).

2. This is documented in “Little Consensus on Global Warming: Partisanship
Drives Opinion” Pew Research Center (2006). We emphasize that these
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How long does it take for beliefs to reach a consensus about
issues of broad interest? What determines the extent of disagree-
ment? Why might consensus be reached among certain subgroups
of a population much more quickly than among a population as a
whole? Understanding convergence times can help us understand
if and when we should expect a consensus to be reached, and
whether a society’s beliefs should settle down quickly or continue
to shift for substantial amounts of time.

The answers to these questions lie partly in the networks of
relationships that are critical determinants of how people update
their beliefs and how they choose their behaviors.? In this article
we examine how the speed of convergence of agents’ behaviors
and beliefs depends on network structure in a model that is rich
enough to capture the segregation patterns that are pervasive in
social networks.

Although social networks are naturally complex, they none-
theless exhibit fundamental patterns and regularities. We focus
on the impact of two of the most fundamental aspects of network
architecture: homophily and link density. Link density refers to
a measure of the number of relationships per capita in a society.
Homophily, a term coined by Lazarsfeld and Merton (1954),
refers to the tendency of individuals to associate disproportion-
ately with others who are similar to themselves. Indeed, homo-
phily is one of the most pervasive and robust tendencies of the
way people relate to each other (see McPherson, Smith-Lovin,
and Cook 2001 for a survey).

Although homophily has been documented across a wide
array of different characteristics, including ethnicity, age, profes-
sion, and religion, there is little modeling of how homophily af-
fects behavior. Intuitively, segregation patterns in a network are
very important for processes of behavior updating, learning, and
diffusion, so it is essential to develop models of homophily’s
effects. One example of this is from Rosenblat and Mobius

disagreements concern purely factual questions, not policy matters. Differences in
initial information, which could be related to attempts to justify policy positions,
can lead tolong-standing disagreements about facts, as we shall see in our analysis.

3. In our analysis, we abstract away from preference differences over policies
and focus directly on updating over information without any incentives to distort or
manipulate the spread of information. Of course, it is difficult to separate any fac-
tual question from its policy implications, and policy preferences might play some
role in the answer to these questions. Nonetheless, network structure also plays a
key role, so we focus on isolating that issue.
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(2004), who show that if agents’ preferences are based on a
(one-time) weighted average of taste parameters of their neigh-
bors, then the resulting preferences can depend on group separ-
ation.* However, although there is a literature on how agents
responding to neighbors’ behaviors converge to equilibrium, and
it is known that network structure matters (e.g., see the survey
by Jackson and Yariv 2011), there has been no work relating
homophily to the speed of convergence. We address this gap by:
(1) working with a model of networks that captures both homo-
phily and link density; and (2) studying how these properties
affect simple but important benchmark updating processes that
are relevant in economic settings. There turns out to be a clean
relationship between the convergence speeds of updating pro-
cesses and the structure of the social networks on which they
operate, and we characterize that dependence.

The model of networks that we study, which we refer to as
the multi-type random network model, allows there to be an ar-
bitrary number of groups making up arbitrary fractions of soci-
ety. The probability of a link between two nodes depends on which
groups they are in. Thus, the model is an extension of classical
random graph models that allows for arbitrary heterogeneity in
types and allows us to tune two fundamental network character-
istics: link density and homophily.®

Using the multi-type random network model as a base, we
focus on a simple updating process, called average-based updat-
ing, in which agents set their next-period behaviors or beliefs
based on the average choices of their peers—as in standard
peer effects models, with a social network structure defining
the peer relationships (for example, see Calvo-Armengol,
Patacchini, and Zenou 2009 and Bramoullé, Djebbari, and
Fortin 2009). This type of process is relevant in a variety of

4. See their Section ITI.C. Other previous work in economics focuses on models
of homophily’s origins (Currarini, Jackson, and Pin 2009, 2010; Bramoullé et al.
2012) and rigorous foundations for measuring the extent of segregation (Echenique
and Fryer 2007). DeMarzo, Vayanos, and Zwiebel (2003) discuss some aspects of
how segregation can affect the updating process they study, but do not formally
model linking behavior as being affected by group membership.

5. Variations of such random graph models appear in the stochastic block
modeling literature (e.g., Fienberg, Meyer, and Wasserman 1985 and Holland,
Laskey, and Leinhardt 1983) and the community detection literature (e.g., Copic,
Jackson and Kirman 2009). The focus in those literatures is on fitting and the
estimation of the underlying (latent) types, not dynamic processes occurring on
networks.
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applications. A simple one is a coordination setting in which an
agent finds it optimal to match the average behavior of his or her
social neighbors and best responds myopically to their last-period
choices. Another updating process in this class is the classic
DeGroot (1974) model of learning and consensus in which one’s
opinion tomorrow about some unknown quantity is an average of
the opinions of one’s friends today. The end of Section II.D in-
cludes some evidence, both experimental and theoretical, on
why average-based updating is a useful benchmark.®

Our focus is on how long it takes a society to reach a consen-
sus or equilibrium via an average-based updating process—and,
in particular, how this depends on homophily. Although we pro-
vide results in the general model, the way network structure
affects convergence speed is most easily seen within the context
of a special kind of random network that we define in Section II1.C,
called the equal-sized islands model. In that model, agents come
in several different types, with an equal number of agents of each
type. Agents link to other agents of the same type with a prob-
ability that is different (typically higher) than the probability
with which they link to agents of other types. Homophily is
defined as the difference of these two probabilities, normalized
by a measure of the overall linking probability (see equation [2]
for a formula). In this setting, the time it takes for average-based
updating processes to converge is increasing and convex in homo-
phily and proportional to the logarithm of population size, but it is
essentially unaffected by any change in overall link density
(holding homophily and population size fixed) as long as the dens-
ity exceeds a low threshold.

This special case captures the essence of what the article
aims to do: operationally define homophily and show how it af-
fects convergence time. To extend this exercise beyond the simple
structure of the islands model, we introduce a general measure of
homophily that works in any multi-type random network. This
measure is called spectral homophily. It is defined by considering

6. One could model the updating of beliefs regarding, say, weapons of mass
destruction in Iraq using a standard Bayesian learning framework. But because of
the extreme complexity of the relevant Bayesian calculations, and the fact that the
rational models tend to predict fast convergence to consensus (Parikh and Krasucki
1990; DeMarzo, Vayanos and Zwiebel 2003; Mossel and Tamuz 2010), we do not
believe this is a particularly appropriate model either in its predictions or its mech-
anics for the types of applications that concern us here.
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a matrix that captures relative densities of links between various
pairs of groups and taking its second-largest eigenvalue.

This article makes two main contributions. The first is
to introduce spectral homophily and argue that this quantity
actually measures homophily—that it coincides with intuitive
notions of homophily and segregation. We do this by showing
that spectral homophily specializes to obvious “hands-on” (i.e.,
eigenvalue-free) measures of homophily in important classes of
networks and by proving an explicit interpretation of spectral
homophily in terms of segregation patterns or “fault lines” in
the group structure. The second contribution is to show how spec-
tral homophily affects the convergence time of average-based
updating processes. Indeed, our main theorem generalizes the
islands result: for average-based updating processes, the time
to converge is increasing and convex in spectral homophily; it is
directly proportional to the logarithm of population size; but it
is essentially unaffected by link density as long as the density
exceeds a low threshold.

An intuition for the results is that in the average-based
updating processes that we examine, agents are influenced by
their acquaintances, and the relative weights on different types
of agents affects an agent’s interim belief. If one doubles connect-
ivity without changing the relative weights of interactions across
groups, the influence on a typical agent’s beliefs from different
groups is unaltered, and so the speed to convergence is unaltered.
In contrast, rearranging the relative weights between groups
affects the speed of convergence. Effectively, under nontrivial
homophily, within-group convergence is relatively fast, and the
main impediment to convergence is the process of reaching con-
sensus across groups. The more integrated groups become, the
faster overall convergence to a consensus becomes.

One of our main innovations is to relate the rate of conver-
gence to imbalances of interactions at the level of groups and to
show that the specific interactions among agents can be ignored.
This is important, as it allows one to work with a very reduced
form rather than considering many details of the interaction
structure, which can be especially difficult to measure or even
keep track of in large societies. This also distinguishes our
approach from previous work on the convergence of various
dynamic processes, in which it is known that the second-largest
eigenvalue of networks is important for the convergence rate
(see, e.g., Montenegro and Tetali 2006 for results on Markov
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processes). By showing that the specifics of the full network can
be neglected, we characterize convergence rates in terms of
group-level homophily. Indeed, this perspective reduces the
study of certain processes in large random networks to the
study of much simpler aggregate statistics that measure inter-
actions between groups. As demonstrated, such a simplification
allows for clean characterizations of convergence times that are
not available otherwise (see Section III.B for a concrete illustra-
tion). This approach also has implications for statistical work.
Because macroscopic, group-level statistics are much more
easily obtained than data on the full network structure (exactly
who links with whom), our results can be used to simplify the
work of an econometrician who is using network data and justify
this simplification rigorously.

To provide some context for the results regarding the conver-
gence time of average-based updating, we briefly compare it to
the analogous convergence time for a simple contagion process. In
the simplest contagion process, a node becomes infected or acti-
vated immediately after any of its neighbors are infected.
Because one neighbor suffices to transmit the contagion, the rela-
tive weights on different types are no longer critical, and instead
overall link density becomes the main determinant of conver-
gence speed. This contrast provides more insight into both
types of processes and makes it clear that the role of network
structure in determining convergence speed depends in intuitive
ways on the type of dynamic process.

As an application of the results and intuitions, we examine a
simple model of voting on a policy in a homophilous society whose
members see signals that are correlated with a true state of
nature. To keep the setting simple, we abstract away from differ-
ent individual preferences and focus on heterogeneity in informa-
tion and interaction patterns. If agents knew the true state of the
world—for example, whether there is a threat to their national
security—all of them would vote the same way. The agents, how-
ever, are uncertain about the true state—they start with different
signals about it—and they have a chance to communicate and
update their beliefs before voting. The two distortions in the so-
ciety come from homophily between the groups and an initial bias
in the distribution of information throughout the society—so that
there is correlation between an agent’s type (say, demographic
group) and the signal seen by that agent. The problematic case is
one in which the signals that are in favor of the truly better policy
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are held mainly by the minority group, while the majority group
happens to have an initial bias of signals in favor of the worse
policy. We study how long it takes for such a society to overcome
the homophily and initial bias in the distribution of information
and vote “correctly.” If the society votes before any communica-
tion takes place, then all agents vote their initial information and
the majority vote is correct (because there are more correct sig-
nals than incorrect ones in the society). After communication
starts, each group aggregates the information within it and, for
a while, the majority group is inclined to vote for the wrong policy.
It then takes time for communication across groups to overcome
the homophily and lead to a correct overall vote. We show that the
time to a correct vote is proportional to an intuitive quantity
that is increasing in the homophily in the society, corresponding
precisely to our general measure of homophily specialized to
this context. Indeed, the time to a correct vote is proportional
to our “consensus” time, incorporating our measure of homophily
weighted by a factor that captures the bias in the initial
information.

The article is organized as follows. Section II lays out the
model of networks, our measure of homophily, and the updating
process we focus on. Section III presents the main results on
how homophily affects the speed of average-based updating pro-
cesses. Section IV strengthens the basic results to characterize
large-scale dynamics of updating and analyze the sources of
long-run disagreement. Section V applies the model to a simple
voting setting. Section VI relates spectral homophily to more
basic, “hands-on” network segregation measures. Section VII con-
trasts an average-based process with a contagion that travels
along shortest paths in terms of how each is affected by homophily.
Section VIII concludes. All proofs are in the Online Appendix.

II. THE MODEL: NETWORKS, HOMOPHILY, AND LEARNING

We work with a simple model of network structure that gen-
eralizes many random network models and is well-suited for iden-
tifying the relative roles of network density and homophily.

II.LA. Multi-type Random Networks

Given a set of n nodes N={1,...,n}, anetwork is represented
via its adjacency matrix: a symmetric n-by-n matrix A with
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entries in {0, 1}. The interpretation is that A;;=A;; =1 indicates
that nodes i and j are linked, and the symmetry restricts atten-
tion to undirected networks.” Let d;(A) = Z};Aij denote the
degree (number of links) of node i, the basic measure of how con-
nected a node is. Let d(A) denote average degree. Finally, let

D(A) =) di(A)

be the sum of all degrees in the network, which is twice the total
number of links.

Agents or nodes have “types,” which are the distinguishing
features that affect their propensities to connect to each other.
Types might be based on any characteristics that influence
agents’ probabilities of linking to each other, including age,
race, gender, profession, education level, and even behaviors.®
For instance, a type might consist of the 18-year-old female
African Americans who have completed high school, live in a par-
ticular neighborhood, and do not smoke. The model is quite gen-
eral in that a type can embody arbitrary lists of characteristics;
which characteristics are included will depend on the application.
There are m different types in the society. Let N, C N denote
the nodes of type k, so the society is partitioned into the m
groups, (Ny,...,N,,). Let n, =N, denote the size of group £,
n=(n4,...,n,) be the corresponding vector of cardinalities, and
n denote the total number of agents.

A multi-type random network is defined by the cardinality
vector n together with a symmetric m-by-m matrix P, whose
entries (in [0, 1]) describe the probabilities of links between vari-
ous types.? The resulting random network is captured via its
adjacency matrix, which is denoted by A(P, n).'° In particular,

7. Although we conjecture that our results can be extended to directed net-
works without much change in the statements, some of our proof techniques take
advantage of the symmetry of the adjacency matrix, so we are not sure of the modi-
fications that might be needed in examining directed networks.

8. However, we do not allow types to depend on behaviors or beliefs that are
endogenous to the model, leaving this interesting potential extension for future
work.

9. We assume a numbering of agents such that Ny =(1, 2,...,n}, No={n,+1,
ni+2,...,n1+ns}, and so on. Given this convention, it is possible to recover the
partition from just the vector n.

10. The modeling of the network structure as random with certain probabilities
amounts to assuming that the large-scale structure of the network is exogenous
to the updating process being studied. This kind of stochastic network with
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A(P, n) is built by letting the entries A;; with i > j be independent
Bernoulli random variables that take on a value of 1 with prob-
ability P, if i€ N, and jeN,. That is, the entry P, captures
the probability that an agent of type %k links to an agent of
type €. We fill in the remaining entries of A(P, n) by symmetry:
A;i=Aj;;. We set A;; =0 for each 1.1 Unless otherwise noted, we use
A(P, n) to denote a random matrix, and A without an argument to
refer to a given deterministic matrix.'?

The multi-type random model subsumes many other
random networks. The seminal random network model of
Erd6és and Rényi is a special case, as are many cases of the
model based on degree distributions of Chung and Lu
(2002).'3 One can also view the probabilities in the matrix P
as arising from distances between some underlying locations,
either physical or abstract. One can even include different soci-
abilities, so that some groups consist of individuals who, for
whatever reasons, form more relationships on average than
others. Thus, it need not be that all nodes have the same ex-
pected number of connections; the network can have a nontri-
vial degree distribution.*

type-dependent heterogeneity can arise from a strategic friendship formation pro-
cess with some randomness in the order of meetings, as in Currarini, Jackson, and
Pin (2009).

11. Under the assumptions of our main results (see Definition 3), the specifica-
tion of the diagonal does not make a difference: one can forbid self-links, require
them, or do anything in between. The proofs in the Online Appendix go through
regardless: a single link for each agent does not significantly affect the aggregate
dynamics of the processes we study.

12. For individual entries, we drop the arguments (P, n), but the matrix in
question will be clear from context.

13. This can also be seen as a cousin of some of the statistical models that have
been used to capture homophily in networks, such as various p* and exponential
random graph models (e.g., see the references and discussion in Jackson 2008b).
There are variations on it in the computer science literature called planted multi-
section models, for example McSherry (2001). An early version of this type of model
was introduced by Diaconis and Freedman (1981) in a study on the psychology of
vision, independently of its introduction in the stochastic block modeling literature
mentioned earlier.

14. There are, of course, networks which this approach is not well suited for
modeling: strict hierarchies, regular lattices, and so on, even though homophily can
and does occur in these networks.
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II.B. A General Measure of Homophily

We now provide a general definition of homophily based on
the probabilities of interaction between various types, and then
show how it works in an important special case.

Let @.,(P, n)=n;n Py, be the expected total contribution to
the degrees of agents of type £ from links with agents of type ¢;
when % # ¢, this is simply the expected number of links between %
and ¢. Also, let d.[Q®P, n)] =", @.«(P, n) be the expected total
degree of nodes of type k.

Let F(P, n) be a matrix of the same dimensions as P with
entries (throughout we take 0/0=0)

P Qu®.n)

d,[QP, n)]’
Thus, F}, is the expected fraction of their links that nodes of type
k will have with nodes of type ¢. This simplifies things in two
respects relative to the realized random network. First, it works
with groups (or representative agents of each type) rather than
individual nodes; second, it works with ratios of expected num-
bers of links rather than realized numbers of links. With this
matrix defined, we can formulate a general homophily measure.

DEriNiTION 1. The spectral homophily of a multi-type random
network (P, n) is the second-largest!® eigenvalue of F(P, n).
We denote it by A°P°“(P, n).

The spectral homophily measure is based on first simplifying
the overall interaction matrix to that of the expected interaction
across groups, and then looking at a particular part of the spec-
trum of that matrix: the second-largest eigenvalue. On an intui-
tive level, a second-largest eigenvalue captures the extent to
which a matrix can be broken into two blocks with relatively
little interaction across the blocks. Indeed, in Section VI, we pre-
sent a formal result showing that spectral homophily picks

15. It is easily checked, analogously to Fact 1 in Online Appendix 1, that the

matrix F(P, n) is similar to the symmetric matrix with entries ——2:®0_
d;[Q(P.n)]d/[Q(P,n)]

and so all the eigenvalues of F are real. To define the second-largest eigenvalue, list
the eigenvalues of this matrix ordered from greatest to least by absolute value,
with positive eigenvalues listed first if there are ties. An eigenvalue is listed the
same number of times as the number of linearly independent eigenvectors it has.
The second eigenvalue in the list is called the second-largest eigenvalue.
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Ficure 1

Islands networks with low and high homophily are shown in (a) and (b),
respectively. Nodes that are shaded differently are of distinct types.

up “fault lines” created by segregation in the network. Here, we
illustrate this in the context of a special case.

II.C. A Special Case: The Islands Model

For an illustration of the general definitions, it is useful to
consider a situation in which groups are equal-sized and all
biased in the same way. In particular, links within a type are
more probable than links across types, and the probability of
those across types does not depend on the specifics of the types
in question. We call this case the “islands” model.

More precisely, the islands model is the special case of the
multi-type random networks model such that (1) each type
(group) has the same number of agents; and (2) an agent only
distinguishes between agents of one’s own type and agents of a
different type. Moreover, all agents are symmetric in how they do
this. Formally, in the multi-type random network notation, we
say the multi-type random network (P, n) is an islands network
with parameters (m, pg, pg) if:

e there are m islands and their sizes, n;, are equal for
all k;

e Py, =p, for all k; and

o Py,=p, for all k+¢, where p; <ps and p,>0.

The idea that agents only distinguish between “same” and
“different” agents in terms of the linking probabilities is surpris-
ingly accurate as a description of some friendship patterns
(e.g., see Marsden 1987 and note 7 in McPherson, Smith-Lovin,
and Cook 2001).
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Figure I depicts two different random networks generated
by the islands model, with different linking probabilities.

In the context of the islands model, it is easy to define
homophily. Let

(1) p=Pstm=Dpa
m

be the average linking probability’® in the islands model (i.e., the
probability that two agents drawn uniformly at random are
linked).

One natural measure of homophily then compares the differ-
ence between same and different linking probabilities to the
average linking probability, with a normalization of dividing by
the number of islands, m:

(2) B8, p,, pg) =P
mp

Note that this is equivalent to Coleman’s (1958) homophily index
specialized to the islands model:

ps 1
mp m
——.
1—-=

m

This is a measure of how much a group’s fraction of same-type
links (572) exceeds its population share (%), compared to how big

this difference could be (1 —1)."7

The measure A'5%% captures how much more probable a link
to a node of one’s own type is than a link to a node of any other
type, and varies between 0 and 1, presuming that p,>py. If a
node only links to same-type nodes (so that p;=0), then the aver-
age linking probability p becomes 2 and so Ristands — 1 while if
nodes do not pay attention to type when linking, then p,=p,
and #2879 = 0. Indeed, the purpose of the m in the denominator

16. This is calculation is approximate: A typical agent is viewed as having
(m — 1) times as many potential intergroup links as potential intragroup links. In
reality, because an agent cannot have a link to himself (but can have a link to
anyone outside his group), this ratio is slightly different. The error of the approxi-
mation vanishes as the islands grow large.

17. To see this, note that Coleman’s index can be rewritten as ﬁ, and then
from (1) it follows that p; — p = ”’T’l (ps — pa); substituting verifies the equivalence.
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is to restrict the variation of the measure exactly to the interval
[0, 1] (under the assumption that p; <p).

This simple measure of homophily introduced is equal to the
spectral homophily.

ProposiTion 1. If (P, n) is an islands network with parameters
(m7 Ds pd)7 then

hislandS(m’ps,pd) — hSpeC(P, Il).

II.D. The Average-Based Updating Processes

The processes we focus on are ones where agents’ behaviors
or beliefs depend on some average of their neighbors’ behaviors or
beliefs. Applications include those where agents dynamically and
myopically best respond, trying to match the average behavior of
their neighbors, as in common specifications of peer effects
models. This also includes belief updating rules based on a
model of updating and consensus-reaching that was first dis-
cussed by French (1956) and Harary (1959), and later articulated
in its general form by DeGroot (1974).

Definition Average-based updating processes are described as
follows. Given a network A, let T(A) be defined by T}j(A) = d‘?(jg).
Beginning with an initial vector of behaviors or beliefs b(0) € [0,

1]*, agent i’s choice at date ¢ is simply

bi(t) = ) T(A)b;(t — 1).
J

That is, the agent matches the average of his or her neighbors’
last-period choices. In matrix form, this is written as:

b(t) = T(A)b(t — 1)
for ¢ > 1. It follows that
b(t) = T(A)'b(0).

The process is illustrated in Figure II.

In Online Appendix 2, we examine a variation of the
model in which agents always put some weight on their initial
beliefs:

b(t) = (1 — 0)b(0) + «T(A)b(z — 1).
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Ficure 11

An illustration of the average-based updating process in which beliefs
(depicted by the shading of the boxes) range from 0 (white) to 1 (black).
Some nodes begin with beliefs of 0 and others begin with beliefs of 1 (Panel
A). Over time, as nodes average the information of their neighbors (Panels B
and C), the process converges to a situation where nodes’ beliefs are shades of
gray (Panel D).

Although in such a model a consensus is not reached, our results
about speed of convergence have direct analogs there. Therefore,
we focus on the case where a=1 in the main text and refer the
interested reader to Online Appendix 2 for the analogous state-
ments in the other context.

Interpretations One simple interpretation of this process is as

a myopic best-response updating in a pure coordination game.
For example, suppose the agents have utility functions

Aij 2

u,(b) = — JZdL(A) (bJ — bl) s

with one interpretation being that agents receive disutility from
interacting with neighbors making different choices (e.g., about
language or information technology). The Nash equilibria clearly
consist of strategy profiles such that all agents in a component
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choose the same behavior. As we will discuss, under mild condi-
tions, myopic best responses lead to equilibrium and we analyze
the speed of convergence.

In a different interpretation based on the updating of beliefs,
each agent begins with some belief 5;(0) at time 0. If the initial
beliefs b,(0), as i ranges over N, are independent and identically
distributed draws from normal distributions around a common
mean, then the linear updating rule at #=1 corresponds to
Bayesian updating for estimating the true mean, as discussed
by DeMarzo, Vayanos, and Zwiebel (2003).!® The behavioral
aspect of the model concerns times after the first round of updat-
ing. After the first period, a Bayesian agent would adjust the
updating rule to account for the network structure and the dif-
ferences in the precision of information that other agents might
have learned. However, due to the complexity of the Bayesian
calculation, the DeGroot process assumes that agents continue
using the simple averaging rule in later periods as well.'®
DeMarzo, Vayanos, and Zwiebel (2003) argue that continuing to
update according to the same rule can be seen as a boundedly
rational heuristic that is consistent with psychological theories
of persuasion bias. It is important to note that agents do learn
new things by continuing to update, as information diffuses
through the network as agents talk to neighbors, who talk to
other neighbors, and so forth.

Some further remarks on the averaging model and its em-
pirical relevance, as well as theoretical properties, can be found
shortly.

Convergence As long as the network is connected and satisfies
a mild technical condition, the process will converge to a limit.?°

18. Under the coordination game interpretation, the model involves no
self-weight (A;; = 0), while in the belief-updating interpretation, A;; =1 is natural.
It turns out that for our asymptotic results, there is no change that arises from
introducing either assumption to the multi-type random graph framework. This is
because (as can be seen via calculations very similar to those in the proof of
Theorem 2 in Online Appendix 1) the spectral norm of the difference between the
updating matrices under these different assumptions tends to 0 as n grows large.

19. Although Bayesian updating can be complicated in general, there are set-
tings where results can be deduced about the convergence of Bayesian posteriors
in social networks, such as those studied by Acemoglu et al. (2011) and by
Mueller-Frank (2012).

20. If the communication network is directed, then convergence requires some
aperiodicity in the cycles of the network and works with a different segmentation
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In the results about random networks, the assumptions ensure
that the networks satisfy the assumptions of the lemma with a
probability tending to one as n grows.?!

Lemma 1. If Ais connected and has at least one cycle of odd length
(this is trivially satisfied if some node has a self-link), then

T(A)Y converges to a limit T(A)™ such that (T(A)*);; = %EAA)) )

Lemma 1 follows from standard results on Markov chains®? and
implies that for any given initial vector of beliefs b(0), all agents’
behaviors or beliefs converge to an equilibrium in which consen-
sus obtains. That is:

d;(A)

lim b(t) = T(A)*b(0) = (b.b.....b) where b= > " b(0)-
J

3

Therefore, the relative influence that an agent has over the
final behavior or belief is his or her relative degree. The rough
intuition behind convergence is fairly straightforward. With
a connected network, some of the agents who hold the most
extreme views must be interacting with some who are more mod-
erate, and so the updating reduces the extremity of the most
extreme views over time. The linearity of the updating process
ensures that the moderation is sufficiently rapid that all beliefs
converge to the same limit. The precise limit depends on the rela-
tive influence of various agents in terms of how many others they
interact with.

Measuring Speed: Consensus Time Consider some network
A and the linear updating process with the matrix T(A). To meas-
ure how fast average-based updating processes converge, we
simply examine how many periods are needed for the vector
describing all agents’ behaviors or beliefs to get within some dis-
tance ¢ of its limit. The measure of deviation from consensus we
use has a simple interpretation. At each moment in time, there

into components, but still holds quite generally, as discussed in Golub and Jackson
(2010).

21. For example, Theorem 1 shows that under these assumptions, agents con-
verge to within a specified distance of consensus beliefs in the worst case, which
could not happen if the network were not connected.

22. For example, see Golub and Jackson (2010) and Chapter 8 of Jackson
(2008b) for details, background, and a proof.

D@A)
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are twice as many “messages” sent as there are links in the net-
work (for the information/learning interpretation of the updating
model)—two messages across each link. Let m(¢) be this vector of
messages for some ordering of the directed links. We define the
distance from consensus at time ¢ to be the root mean square
distance of m(¢) from its limit m(oo). For the network A and start-
ing beliefs b, we denote this distance (the consensus distance) at
time ¢ by CD(z; A, b).

This measurement of distance between messages corres-
ponds to a weighted version of the usual ({5) norm. More
specifically, given two vegtors of beliefs v and wu, define
Iv—uly = [, wi(v; —w;)?]". The distance of beliefs at time
t from consensus is then CD(#; A, b)=|T(A)'b —T(A)*blga),
where we use the weights s(A) defined by s(A)=
(‘3&), s %((:)) . In other words, |T(A)'b— T(A)°°b||z(A) is a
weighted sum of differences between current beliefs and
eventual beliefs, with agent i’s term weighted by his or her rela-
tive degree. This is equivalent to the “messages” interpretation
because an agent with degree d;(A) sends a share of the messages
in the network given exactly by s;(A) = ‘li)’f:)) .

Then the consensus time is the time it takes for this distance
to get below &:

DerintTION 2. The consensus time to ¢ > 0 of a connected network
Ais
CT(e; A) = sup min{t: CD(t; A, b) < &}.
bel0,1]"

The need to consider different potential starting behavior or
belief vectors b is clear, because, if one starts with 5,(0)=56,(0)
for all i and j, then equilibrium or consensus is reached instantly.
Thus, the “worst case” b will generally have behaviors or beliefs
that differ across types and is useful as a benchmark measure
of how homophily matters; taking the supremum in this way is
standard in defining convergence times. This is closely related to
mixing time, a standard concept of convergence for analyzing
Markov chains.??

23. For a discussion of various measures of convergence speed, see Montenegro
and Tetali (2006).
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Why is consensus time a good measure to study?
Fundamentally, average-based updating is about reaching an
equilibrium or consensus through repeated interaction. In
many applications, agents may never fully reach an equilibrium
or consensus, and whether they get close depends on the speed of
convergence. Therefore, an important measure of the speed of
convergence is obtained by asking how many rounds of commu-
nication it takes for beliefs to get within a prespecified distance
of their limit.**

Why Average-Based Updating? Despite the simplicity of
average-based updating, it has a number of appealing properties.
In the coordination game application, it obviously leads agents to
converge to an efficient equilibrium in a very simple and decen-
tralized way.

In the learning application, too, it turns out that the process
often leads to efficient or approximately efficient outcomes in the
long run. In particular, Golub and Jackson (2010) analyze condi-
tions under which this “naive” updating process converges to a
fully rational limiting belief (that is, the Bayesian posterior con-
ditional on all agents’ information) in a large society. The condi-
tions require®® no agent to be too popular or influential. These
conditions will be satisfied with a probability going to one in the
settings that we study here—for example, under the regularity
conditions of Definition 3—and so the naive beliefs will eventu-
ally approach a fully rational limit.

To obtain the same learning outcome by behaving in a fully
Bayesian manner when the network is not common knowledge,
agents would have to do a crushing amount of computation (see
Mueller-Frank 2012 for some discussion of this issue, as well as
explicit Bayesian procedures). Thus, if computation has even a
tiny cost per arithmetic operation, the averaging heuristic can
have an enormous advantage, both from an individual and
group perspective. Indeed, this argument appears to be borne

24. The particular measure of distance from consensus that we have defined,
CD, can be small even if a few agents deviate substantially from the eventual con-
sensus. One could focus instead on the maximum deviation from consensus across
agents. We believe all our results would be similar under this alternative specifi-
cation. Note also that consensus time to ¢ as we define it is a lower bound on the time
it would take for such an alternative distance measure to fall below e.

25. See Section I1.C of that paper for the simple result relevant to the present
framework.
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out by some recent empirical evidence. In an experiment seeking
to distinguish different models of learning, Chandrasekhar,
Larreguy, and Xandri (2010) placed experimental subjects in
the learning setting described above.?® They find that the sub-
jects’ updating behavior is better described by repeated averaging
models than by more sophisticated rules.?’

ITII. HOw HOMOPHILY AFFECTS THE SPEED OF
CONVERGENCE

III.A. The Main Result

This section presents the main result. A few definitions
and notations are needed first. Throughout the section, we
consider sequences of multi-type random networks, with all
quantities (e.g., the matrix of intergroup linking probabilities P
and the vector of group sizes n) indexed by the overall population
size, n. We generally omit the explicit indexing by n to avoid
clutter.

The next definition catalogs several regularity conditions on
a sequence of multi-type random networks that will be assumed
in the theorem.

DEFINITION 3.

(1) A sequence of multi-type random networks is suffi-
ciently dense if the ratio of the minimum expected
degree to log® n tends to infinity. That is:

miny, d;[Q(P, n)] e
log’n

26. See also Choi, Gale, and Kariv (2005) for earlier experiments on learning in
simple networks.

27. Corazzini et al. (2011) also report results that favor a behavioral
DeGroot-style updating model over a Bayesian one. Nevertheless, there are some
nuances in what the most appropriate model of boundedly rational updating might
be, and how it depends on circumstances. Mobius, Phan, and Szeidl (2010) find some
experimental evidence that in situations where information is “tagged” (so that
agents not only communicate their information but also where a piece of informa-
tion came from), the overweighting of some information that may take place under
the DeGroot process can be avoided. The straight DeGroot model seems more ap-
propriate when such tagging is difficult, which can depend on the nature of the
information being transmitted, the size of the society, and other details of the
process.
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(2) A sequence of multi-type random networks has no
vanishing groups if

.. n
liminf =% > 0.
non

(3) A sequence of multi-type random networks has interior
homophily if

0 < liminf A°P*¢(P, n) < lim sup A*"**(P, n) < 1.

(4) Let P denote the smallest nonzero entry of P and P
denote the largest nonzero entry. A sequence of multi-
type random networks has comparable densities if:

0< limninf E < limnsupE < 00.

The sufficient density condition ensures that with a prob-
ability tending to 1, all nodes will be path-connected to each
other.?® The condition of no vanishing groups ensures that all
groups have a positive share of the population. The condition of
interior homophily requires that homophily not grow arbitrarily
large or approach 0.2? Finally, the comparable densities condition
ensures that positive interaction probabilities do not diverge ar-
bitrarily: they may be quite different, but their ratios must
remain bounded.

The next definition is simply used to state the theorem’s con-
clusion compactly.

DEriNITION 4. Given two sequences of random variables x(n)
and y(n), we write x(n) ~ y(n) to denote that for any ¢ > 0, if
n is large enough, then the probability that

% <x(n) < 2(1 + e)y(n)

is at least 1 —e.

28. The minimum needed for the network to be connected asymptotically
almost surely is for the degrees to grow faster than log n. The condition here is a
little stronger than this and turns out to be what is needed to prove the tight asymp-
totic characterizations of convergence time we are about to present.

29. The case of no homophily is dealt with in detail in Chung, Lu, and Vu (2004),
and the case of homophily approaching 1 may lead the network to become discon-
nected, in which case there can be no convergence at all. We leave the study of that
more delicate situation (where the rate of homophily’s convergence to 1 will be
important) to future work.
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In other words, x(n) ~ y(n) indicates that the two (random)
expressions x(n) and y(n) are within a factor of 2 (with a vanish-
ingly small amount of slack) for large enough n with a probability
going to 1.

With these preliminaries out of the way, we can state the
main result.

TuEoREM 1. Consider a sequence of multi-type random net-
works satisfying the conditions in Definition 3. Then, for
any y > 0:

Y. . log()
CT(H A n)) log (Ihs—*’“%P,nN) |

This result says that the speed of convergence of an
average- based updating process is approximately proportional
to log(rewm— hspeC(P n)l) Moreover, the speed of the process essentially
depends only on population size and homophily. The approxima-
tion for consensus time on the right-hand side is always within a
factor of 2 of the true consensus time. Properties of the network
other than spectral homophily can change the consensus time
by at most a factor of 2 relative to the prediction made based on
spectral homophily alone.

Note that the matrix F(P, n) introduced in Section II.B is
invariant to multiplying all linking probabilities by the same
number, and so the estimate above is invariant to homogeneous
density shifts. Indeed, in Proposition 2, we prove something
stronger than this.

The intuition behind why degree does not enter the expres-
sion in Theorem 1 is as follows. If one doubles each agent’s
number of links, but holds fixed the proportion of links that an
agent has to various groups, then the amount of weight that
agents place on various groups is unaffected. In the DeGroot pro-
cess, each group quickly converges to a meta-stable internal
belief, and then the differences in beliefs across groups are pri-
marily responsible for slowing down convergence to a global con-
sensus (see Section IV for more on this). It is the relative weights
that agents put on their own groups versus other groups that
determine the speed of this convergence. This is exactly what is
captured by the homophily measure. Because these relative
weights do not change under uniform density shifts, neither
does convergence speed.
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Finally, the parameter ¢=! in the consensus time
CT(%;A(P, n)) deserves some explanation. This choice is not es-
sential. Indeed, Proposition A.5 in Online Appendix 1 shows that
for any choice of ¢, the consensus time CT(¢; A(P, n)) can be char-
acterized to within a fixed additive constant, and the inverse pro-
portionality to log(,lsp%m) remains unchanged. The intuition for
choosing ¢ = £ can be described as follows. Under the assumption
of comparable densities and no vanishing groups, all agents have
an influence of order% on the final belief. That is, the final beliefis
a weighted average of initial beliefs, and each agent’s weight is of
order %.30 Therefore, if we begin with an initial condition where
one agent has belief 1 and all others have belief 0, then the limit-
ing consensus beliefs will be of order r—ll Suppose we want a meas-
ure of consensus time that is sensitive to whether the updating
process has equilibrated in this example. Then, to consider con-
sensus to have been reached, the distance from consensus, as
measured by the distance CD(¢; A(P, n), b) of Section II.D,
should be Z for some small constant y > 0. This amounts to requir-
ing that agents should be within a small percentage of their final
beliefs. Therefore, setting ¢ = X results in a consensus time meas-
ure that is sensitive to whether a single agent’s influence has
diffused throughout the society.

III.B. Applications to Specific Classes of Networks

The Islands Model We can immediately give two applications
of this result. First, recall the islands model of Section II.C.
There, we showed that if (P, n) is an islands network, then

hEPC(P, ) = hiSIandS(m,ps,pd) _ DPs — Pd ’
mp

This is a simple and hands-on version of the spectral homophily
measure. Theorem 1 then immediately implies the following
concrete characterization of consensus time.

CoroLLARY 1. Consider a sequence of islands networks with par-
ameters (m, p,, pg) satisfying the conditions in Definition 3.

30. The formal proofrelies on the fact that each agent’s influence is proportional
to his degree, as stated in Section I1.D, and the fact that each agent’s degree is very
close to his expected degree (see Lemma A.4 in Online Appendix 1).
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Then, for any y > 0:

on(”: A, m) ~ 8o o)
log <\h‘S‘a“ds(m,ps,pd)l> log Ps—Pd

Note that if p; and p; are scaled by the same factor, then p scales
by that factor, too, so the estimate above is unaffected.

This example illustrates why a group-level perspective is
useful, and how it goes beyond what we knew before. It is fairly
straightforward from standard spectral techniques to deduce that
CT(%; A(P, n)) is approximately

log(n)
log | =map=m |
gl ma®)

where Ao(T) is the second-largest eigenvalue of T. Because
h°P(P, n) is the second-largest eigenvalue of a closely related
matrix (recall Section I1.B), one might ask whether Theorem 1
really yields much new insight.

We argue that it does. Recall that T(A(P, n)) has dimensions
n-by-n, which typically makes it a large matrix, and that it is a
random object, with zeros and positive entries scattered through-
out. It is not at all obvious, a priori, what its second eigenvalue is,
or how it relates to the large-scale linking biases. Theorem 1
allows us to reduce this hairy question about T(A(P, n)) to a
question about the much smaller deterministic matrix P (whose
dimensionality is the number of groups, not agents), and obtain
the formula of Corollary 1. We are not aware of other methods
that can yield such a formula. This demonstrates the power of the
group-level approach.

Two Groups The analysis of the islands model is special in
that all groups have the same size. To obtain simple expres-
sions that allow for heterogeneity in group size, we restrict
attention to two groups, that is, m=2. This echoes the intu-
itions of the islands model and again illustrates the main
points cleanly.

For the two-group model, the vector n has two entries (the
two group sizes) and we focus on a case such that Py, =Py =p,
while P12 =P21 =Dd> and DPs>DPqg-

In contrast to the islands model, there is no longer a
homogeneous link density, since the two groups can differ in
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size. Thus, the average link probability (allowing self-links) for
group k is

_ "Ds +n_rpg

P ni+ng

where —% denotes the group different from k.
Coleman’s (1958) homophily index specialized to a group
k is
mps _ m
hk_npk n N ps_pk.

= S
1-5 n—np pp

Recall that this is a measure of how much a group’s fraction of
same-type links (%) exceeds its population share (%%), compared
to how big this difference could be (1 —7%).

We define the two-group homophily measure as the weighted
average of the groups’ Coleman homophily indices:

htwo(ps,Pd, l’l) — @hl _}.Ehz
n n

Here, weighting each homophily by the other group’s size
accounts for the relative impact of each group’s normalized homo-
phily index, which is proportional to the size of the group with
which a given group interacts.

Again, note that the homophily measure, 2™°(p,, pg, n),
is insensitive to uniform rescalings of the link density and
depends only on relative fractions of links going from one group
to another. It is 0 in a case where the link probabilities within
groups are the same as across groups; it is 1 when all links are
within groups.

With the definitions in hand, we state the characterization of
consensus time in the case of two groups.

CoroLLARY 2. Consider a sequence of two-group random networks
(as already described) satisfying the conditions in Definition
3. Then, for any y > 0:

CT(Z; AP, n)) ~ hg#.
n log (o, prm))

Thus, consensus time depends only on the size of the network
and on the weighted average of the groups’ Coleman homophily
indices!
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III.C. The Speed of Average-Based Updating Is Invariant to
Uniform Density Shifts

Theorem 1 and the special cases we have just discussed sug-
gest that consensus times do not depend on density but only
on ratios of linking densities. That is, if linking probabilities
are adjusted uniformly, then the estimate of consensus time in
Theorem 1 is essentially unaffected. The following result
strengthens this conclusion.

ProposiTion 2. Consider a sequence of multi-type random net-
works (P, n) and another (P’, n), where P'=cP for some
¢ > 0. Under the conditions of Theorem 1, the ratio of consen-
sus times

CT(; A(P, n))
CT(; AP’ n))

converges in probability to 1.3

III.D. How the Main Result Is Obtained

In this section, we give an outline of the main ideas behind
Theorem 1. There are two pieces to this. One is the role of the
second eigenvalue as a measure of speed, which follows from
known results in Markov theory. The other, which is the major
technical innovation in our article, is to show that the inter-
actions that need to be considered are only at the group level,

31. Forany § > 0, we can find large enough n such that the ratio of the two Online
Appendix 1small enough §, consensus times is in the interval [1 -6, 1+§] with
probability at least 1 — 4.

The reason that this proposition is not an immediate corollary of Theorem 1 is
as follows. According to Theorem 1, both consensus times CT (% AP, n)) and
CT(Z; A(P’, m)) are approximately

log(n) log(n)

1 - 1
log(‘hspec(Pvn)‘) log(lhspec(P'_n)‘)

)

with the equality holding since 2°P*° is invariant to degree shifts. But the ~ of
Theorem 1 allows each consensus time to deviate by a factor of 2 from the estimate,
sothat, a priori, the two consensus times might differ by a factor of as much as 4. The
proposition shows that this is not the case.

Density adjustments that are not uniform will change the ratios of interaction
across groups. By Theorem 1, the consensus time would then change in a way that
depends on how the second-largest eigenvalue of F(P, n) is affected.
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and only need to be considered in terms of expectations and not
actual realizations.

Consensus Time and Second Eigenvalues The following
lemma relates consensus time to the second-largest eigenvalue
(in magnitude) of the realized updating matrix.

Lemma 2. Let A be connected, Ao(T(A)) be the second-largest

eigenvalue in magnitude of T(A), and s := mig‘ﬁ(A) be the
minimum relative degree. If 15(T(A))#0, then for any

O<e<l1:

log(@) —log<§1%) < CT(s; A) < _log®) :
log(m> - - log(m)

If A5(T) =0, then for every 0 <¢ <1 we have CT(¢; A)=1.

If ¢ is fairly small, then the bounds in the lemma are close to
each other and we have a quite precise characterization in
terms of the spectrum of the underlying social network.
However, the lower bound in Lemma 2 includes a term log(sl%),
which can grow as n grows. In Online Appendix 1, Proposition'A.5
shows that this can be dispensed with under the assumptions of
Definition 3.

The proof of this result follows standard techniques from the
literature on Markov processes and their relatives (Montenegro
and Tetali 2006).

Relating Second Eigenvalues to Large-Scale Network
Structure As mentioned above in Section III.B, a result like
Lemma 2 has the limitation that the second eigenvalue of a
large random matrix does not immediately yield intuitions
about how group structure affects convergence rates; for large
populations, even computing this eigenvalue precisely can be a
challenge. Thus, our goal is to reduce the study of this object to
something simpler.

To this end, we present the main technical result: a
“representative-agent” theorem that allows us to analyze the con-
vergence of a multi-type random network by studying a much
smaller network in which there is only one node for each type
of agent. We show that under some regularity conditions, the
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second eigenvalue of a realized multi-type random graph con-
verges in probability to the second eigenvalue of this representa-
tive agent matrix—namely, the matrix F(P, n) introduced in
Section II.B. That eigenvalue is precisely the spectral homophily,
hP(P, n).

This result is useful for dramatically simplifying computa-
tions of approximate consensus times both in theoretical results
and in empirical settings, because now the random second eigen-
value of the updating matrix can be accurately predicted knowing
only the relative probabilities of connections across different
types, as opposed to anything about the precise realization of
the random network. Indeed, this result is the workhorse used
in Online Appendix 1 to prove all the propositions about the is-
lands and two-group cases already discussed.

TueoreM 2. Consider a sequence of multi-type random networks
described by (P, n) that satisfies the conditions of Definition 3
(i.e., is sufficiently dense; and has no vanishing groups,
interior homophily, and comparable densities). Then for
any § > 0 if n is sufficiently large,

|22(T(A(P, m))) — 22(F(P,m))| <3,
with probability at least 1 — 6.

Theorem 2 is a law of large numbers for spectra of multi-type
random graphs. Large-number techniques are a central tool in
the random graphs literature; they show that various important
properties of random graphs converge to their expectations,
which shows that these locally haphazard objects have very
predictable global structure. The closest antecedent to this par-
ticular theorem is by Chung, Lu, and Vu (2004) for networks
without homophily. Their result shows that expectations rather
than realizations are important in some particular limiting
properties of a class of random graph models. Our theorem is
the first of its kind to apply to a model that allows homophily
and the associated heterogeneities in linking probabilities,
which eliminates the sort of symmetry present in many
random graph models. The proof employs a strategy similar to
that of Chung, Lu, and Vu (2004). That strategy relies on
decomposing the random matrix representing our graph into
two pieces: an “orderly” piece whose entries are given by linking
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Panel (A) is shaded according to the type-based probabilities of linking be-
tween nodes, with darker shades indicating higher probabilities, and Panel (b)
is a single realized matrix drawn from the multi-type random network model
with Panel (B) probabilities, shaded according to the actual realizations of
links.

probabilities between nodes of various types, and a noisy piece
due to the randomness of the actual links. By bounding the
spectral norm of the noise, we show that, asymptotically, the
second eigenvalue of the orderly part is, with high probability,
very close to the second eigenvalue of the random matrix of
interest. Then we note that computing the second eigenvalue
of the orderly part requires dealing only with a representative-
agent matrix.

Figure III provides an idea of why Theorem 2 holds.
Figure IlIa presents the type-based probabilities of linking, in a
case with 300 nodes and three groups (each of 100 nodes) with
varying probabilities of linking within and across groups repre-
sented by the shading of the diagram. In Figure IIIb, the picture
is broken into 300 x 300 pixels, where a pixel is shaded black if
there is a link between the corresponding nodes and is white if
there is no link. This is a picture of one randomly drawn network
where each link is independently formed with the probability
governed by the multi-type random network model with the prob-
abilities in Figure IIIa. One sees clearly the law of large numbers
at work as the relative shadings of the expected and realized
matrices coincide rather closely. Though this is harder to see in
a picture, the same will be true of the important parts of the
spectra of the two matrices.
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IV. INTERIM DYNAMICS AND SEPARATING THE SOURCES
OF DISAGREEMENT

In this section, we focus on the dynamics of behaviors to tease
apart the effects of homophily and initial disagreement and thus
clarify the implications of the model.

IV.A. Reducing to the Dynamics of Representative Agents

Suppose that initial beliefs ;(0) of agents of type £ (so that
1 €Np) are independent random variables distributed on [0, 1]
with mean u,. Let p € R™ be the vector of these means with as
many entries as types.

Recall the definition of F(P, n) from Section II.B. The (%, ¢)
entry of this matrix captures the relative weight of type £ on type
¢. Fixing F(P, n), define the vector b(t) € R™ by

b(t) =F@P,n) .

This is an updating process in which there is one representative
agent for each type, that starts with that type’s average belief,
and then the representative agents update according to the group
updating matrix F(P, n). We call this the representative-agent
updating process. We can then define a vector b(¢) € R" by the
property that if agent i is of type k&, then b;(¢) = b(¢). That is, b(t)
gives to each agent a belief equal to the belief of the representa-
tive agent of his type.

Then we have the following result, which states that the real
process is arbitrarily well-approximated by the representative
agent updating process for large enough networks.

ProposiTion 3. Fix a sequence of multi-type random networks
described by (P, n) that satisfies the conditions in
Definition 3. Consider initial beliefs drawn as described
above, and let®* b(t) = T(A(P, n))'b(0). Then, given a §> 0,
for any sufficiently large n and all £>1, the inequality®®
[b(#) —b(#)lle/n < & holds with probability at least 1.

This proposition shows that in large enough (connected)
random networks, the convergence of beliefs within type occurs

32. Thus, b(¢)is arandom variable, which is determined by the realization of the
random matrix A(P, n).

33. Here e is the vector of all ones, and so we are using an equal-weight ¢ norm:
v =l = [0 — )P
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quickly—essentially in one period—and that all of the difference
is across types afterward. To understand why this is the case,
note that under the connectivity assumption in Definition 3,
each agent is communicating with many other agents as n be-
comes large, and thus the idiosyncratic noise of any single
agent is washed away as n grows—even with just one period of
communication. Moreover, each agent of a given type has a simi-
lar composition of neighbors, in terms of percentages of various
types. Therefore, it is only the difference across types that re-
mains after one period of communication. This proposition then
allows us to focus on the representative-agent updating process
with only an arbitrarily small loss in accuracy, even after just one
period.

IV.B. Separating and Estimating the Sources of Disagreement

To clarify the roles of initial disagreement and homophily, it
is enough (and clearest) to examine the case of two groups, as
described in Section III.B. Let D, =n(p,n; + pan_;) be the expected
total degree of group i and D be the total degree D=D;+ D,.
Writing & = A™°(p,, py, n), we can compute®*

D; +D_h! . +D_i(1 — ht) .
D i D H—i.
Beliefs converge to a weighted average of initial beliefs, with

each group’s mean getting a weight proportional to its total
degree, D,. The difference in beliefs is then

bi(t) — ba(t) = h' (1 — pa).

Thus, disagreement at a given time is always proportional to ini-
tial disagreement, but its impact decreases by a factor that decays
exponentially in time based on the level of homophily.

We can also write®®

log(b1(t) — b2(t)) = (logh) - ¢t +log(i1 — pa).

Consequently, given data on the average disagreement between
types, b1(¢) — ba(t), at several different times, running a regres-
sion of log(b1(t) — b2(¢)) on t would estimate both the logarithm of

bi(t) =

_ 34.The formulas can be verified inductively using the law of motion
b(t + 1) = F(P, n)b(¢), recalling that b(¢) = .
35. We assume pg > pg, so h > 0.
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homophily (as the coefficient on #) and the logarithm of initial
disagreement (as the intercept). Note that the validity of this
procedure does not depend on the sizes of the different groups
or the values of p, and pg4, nor does it require any adjustments
for these (typically unknown) quantities. Therefore, when the
model holds, it provides a simple way to distinguish what part
of disagreement is coming from differences in initial information
or inclinations, and what part is coming from homophily in
the network. Extending these results to more groups, as well as
richer distributions of initial beliefs (allowing for some correl-
ation across agents’ beliefs), presents interesting directions for
future study.

IV.C. Consequences for Interpreting the Main Results

A central finding of this article is that homophily slows con-
vergence. The mechanism by which this occurs in our model is
as follows. Homophily, through the type-dependent network-
formation process, causes “fault lines” in the topology of a net-
work when agents have linking biases toward their own type.
That is, there are relatively more links among agents of the
same type, and fewer links between agents of different types.
This creates the potential for slow convergence if agents on dif-
ferent sides of the fault lines start with different beliefs. Since
consensus time is a worst-case measure (recall Definition 2), it
equals the time to converge starting from such initial beliefs; this
is a natural initial point to the extent that types not only corres-
pond to network structure but also to differences in initial
information.

In the model, agents’ types play a direct role only in deter-
mining the network topology.?®* We view this as a plausible and
important channel through which homophily affects communica-
tion processes. In some situations, however, it may be desirable
to also think of types as separately determining agents’ initial
beliefs, rather than focusing on a worst-case initial condition.

36. In particular, agents’ types have no formal role in the definition of the
updating process or of consensus time, although, of course, they affect both
things through the structure of the network. Holding fixed a given random network
generated by the multi-type random graph model, we could “scramble” the type
labels—that is, reassign them at random—and neither the updating process nor the
consensus time would change, though some interpretations might. Thus, our main
results about homophily should be interpreted as referring to the types that were
relevant in network formation in the multi-type random network setting.
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The results given in this section show how to do this. More gen-
erally, one may think of agents having two different kinds of type:
a “network type”—the traits that determine the probabilities of
linking—and a “belief type”—the traits that govern initial beliefs
b,(0). Then the calculation in Section IV.B can be interpreted
as follows: if network type and belief type are highly correlated
(so that 1 is significantly different from 15), then we should see a
high persistence of disagreement (assuming there is homophily
based on the network type). But if they are uncorrelated, so that
1= g, then there should be no persistent disagreement, regard-
less of linking biases.?”

V. AN APPLICATION: VOTING IN A SOCIETY WITH HOMOPHILY

We now provide an application that illustrates some of the
concepts and results. The application is one in which a society
that exhibits homophily sees some signals that are correlated
with a true state of nature, and then the agents communicate
to update their beliefs. After communicating for some time, the
agents vote on a policy. The question is: do they vote correctly?
The answer depends on homophily. Even when the society has
more correct signals than wrong ones, and it is guaranteed even-
tually to converge to a situation where a majority holds the cor-
rect view, in the medium run homophily can cause incorrect
majority rule decisions.®

To keep the setting simple, we abstract away from individual
preferences and focus on heterogeneity in information and in
interaction patterns. All agents want their votes to match the
true state.

The model is as follows: a society of n agents consists of two
groups; one forms a fraction M € (% 1) of the society and is
referred to as the “majority group”; the other is referred to as
the “minority group.”

We work in the setting of Section IV. There is a true state of
nature, o € {0, 1}. Agents see signals that depend not only on the

37. We thank an anonymous referee for suggesting this discussion.

38. Neilson and Winter (2008) study deliberation through linear updating fol-
lowed by voting. They point out that voting before convergence occurs can yield
results different from the eventual consensus of the society; we extend their frame-
work to study how these deliberative processes are affected by large-scale homo-
phily in a connected network.
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state but also on the group they are in. In particular, agents in the
majority have a probability u of seeing a signal that is equal
to the state w, and probability 1— u of seeing a signal 1— w,
which is the opposite of the true state. As for the minority
group, their probability of seeing a correct signal is v, and other-
wise they see an incorrect signal. Conditional on w, all these sig-
nals are independent.

The two probabilities 1« and v are chosen so that the overall
expected fraction of agents in the society with a correct signal is
some given p > 1. Thus, My +(1—M)v=p and so

_p—Mu
C1-M
We assume that each agent, irrespective of type, has the
same expected number of links and, consequently, approximately
the same influence on the final belief. Thus, regardless of the
initial distribution of who sees which signal, the weighted aver-
aging of beliefs will converge in a large society to b;(c0) =p if the
state is w=1 and b;(c0) =1 — p if the state is w=0. We consider a
voting rule so that, at time ¢, an individual votes “1” if b;(¢) > %
and “0” if b;(¢) < 3. This will eventually lead society to a correct
decision. Moreover, note that if agents vote without any commu-
nication (that is, based on initial beliefs 5,(0)), then there will be a
correct majority vote, since a fraction p > % of the agents will vote
for the correct state. It is in intermediate stages—such that
agents have had some communication, but not yet converged—
where incorrect votes may occur.
The groups exhibit homophily. The group-level matrix
F(P, n) of relative linking densities is®®:

TP = <;Q_f I;—fQ)

A majority agent has a fraction f of his or her links to the minority
group, whereas a minority agent has a fraction f@ of his or her

39. Note that this multi-type random network departs from our two-group set-
ting introduced in Section II1.B, in that a majority agent’s probability of linking to a
majority agent may differ from the probability that a minority agent links to a
minority agent (whereas, in the basic two-type model, both probabilities would be
equal to the same number p,). Nevertheless, it fits into the general multi-type
framework. Throughout this section, we assume that the regularity conditions of
Definition 3 are satisfied by the sequence of multi-type random networks.
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links to the majority group, where @ = % (as required for a case
of reciprocal communication). Suppose that 1 — M >f> 0, so that
there is a bias toward linking to one’s own type (if there were no
bias, then fshould equal 1 — M).%° In a situation in which there is
no bias in how signals are distributed across the population, the
communication will quickly aggregate information and lead to
correct voting. The interesting case is when there is some bias
in how signals are distributed across the groups.

Without loss of generality, suppose the true state turns out to
be w=1. If there is no bias in how signals are distributed across
groups, then a fraction pM of these signals are observed by the
majority group, and a fraction p(1 — M) of them are observed by
the minority group. If there is a bias, then the “correct” signals
will be more concentrated among either the majority group or the
minority group. It is easy to see that if they are concentrated
among the majority group, voting will tend to be correct from
the initial period onward, and so is not led astray by communica-
tion. However, if the correct signals turn out to be more concen-
trated among the minority, then it is possible for short-term
communication to lead to incorrect voting outcomes. Recall that
u is the fraction of majority agents who observe the correct signal
of 1. From now on we focus on the case 1 < 1. Under the assump-
tion that p is the overall expected fraction of correct signals in the
population, the minimum value that u can take is ’%‘M), which
corresponds to the case where every minority agent sees a correct
signal and then the remaining correct signals are observed by the
majority group.

In the initial period #=0, before any communication, all
agents vote based on their signals, so there is a correct vote,
with a fraction p agents voting “1” and (1 —p) of the agents
voting “0.” Now let us consider what happens with updating.

We use Proposition 3, which allows us to reduce the large-
population dynamics to the representative agents with a vanish-
ing amount of error. We can then use the matrix F(P, n) to deduce
that, after one period of updating, the beliefs of the majority
group will be

bMaj(l) =p— <1 - ﬁ)(p — W

40. The number f=1—M is the correct unbiased link fraction for majority

agents if agents are allowed self-links, but otherwise it would be (};iul;".
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and the beliefs of the minority will be

bMin(D) =P + Q(l - ﬁ)(p - .
Thus, in a case where f <1 — M and u < p, the majority will have a
lower belief than the average signal. This corresponds to homo-
phily (f below its uniformly mixed level of 1—M) and a bias
toward error in the initial signal distribution of the majority
(i below the probability p that a randomly chosen agent has a
correct signal).

This presents an interesting dynamic. If agents can vote
before any communication has taken place, then they will vote
correctly. After an initial round of communication, the majority
of beliefs can be biased towards the wrong state, but then again
in the long run the society will reach a correct consensus. So,
how long will it take for the voting behavior to converge to
being correct again after some communication? This will
depend both on the homophily and the bias in the signal distri-
bution. In particular, the general expression for beliefs after
¢ periods of updating is*!

byaj6) =0~ (1= 12 57) 0=

and

f t
bMin®) =p + Q<1 “1-M (P — .
Here we see the dynamics of homophily explicitly. The devi-
ation of beliefs after ¢ periods from their eventual consensus

is proportional to the initial bias in signal distribution times a

factor of
f t
(1 1-M)

which captures how homophilous the relationships are. Recall
that fis the fraction of the majority group’s links to the minority

41. This is seen as follows. If byi(t — 1) =p —a and byn(t — 1) =p +a@, then
bmaj®) =p — (1 = Ha +fQa, which is then rewritten as by;(t)=p —a(l—A1+Q)).
Noting that 1+ @ = ﬁ leads to the claimed expression. The averaging of overall
beliefs to p provides the corresponding expression for byy,.
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group, which in a world without homophily would be 1 — M, and
with homophily is below 1 — M. The impact of homophily decays
exponentially in time.

The first period in which voting will return to being correct is

the first ¢ such that
4 _1
1 \y_P 2
1-M) p—n

which depends on how biased the initial signal distribution
is, and on an exponentially decaying function of homophily.
Treating the representative dynamics approximation as exact
for the moment and ignoring integer constraints*?, the time to
the correct vote is

1
P—3
logpﬂ

log<1 - ﬁ) .
The expression resembles our earlier results, with (1 — ﬁ) cor-

responding to the homophily. In fact, the matrix F(P, n) has a
second-largest eigenvalue

(4)

P =1-f-fQ=1--1

and so (4) is exactly

log 7))
log |hsPee(P, )|’

which resembles the formulas in our earlier results.

From the formula, one can immediately deduce that the time
to a correct vote is decreasing in the fraction of majority agents
having the correct initial signal, decreasing in the overall fraction
of correct signals p, and increasing and convex in homophily
(becoming arbitrarily large as homophily becomes extreme).

Thus, when deliberation occurs in the setting of our model
before a vote, the efficiency of electoral outcomes (measured by the
time it takes to be able to get a correct vote) depends not only on
the overall quality of information distributed throughout society

42. It can be seen from Proposition 3 that for fixed values of the parameters in
this section, taking n large enough will result in the true ¢ being off by at most 1
relative to this estimate.
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at the beginning but also on how it is distributed (what fraction of
majority agents get correct information) and on the segregation
patterns in communication, as measured by homophily.

VI. WHAT SPECTRAL HOMOPHILY MEASURES

Homophily has consequences for updating processes because
it creates “fault lines” in the patterns of interactions among
groups. Homophily makes it possible to draw a boundary in the
group structure, separating it into two pieces so that there are
relatively few links across the boundary and relatively many
links not crossing the boundary. Therefore, an appropriate
global measure of homophily should find a boundary where that
disparity is strongest and quantify it.*?

In this section, we show that the spectral homophily measure
accomplishes this. We do this by proving an estimate on spectral
homophily in terms of a more “hands-on” quantity that we call
degree-weighted homophily.

Let M={1,...,m} be the set of groups. First, we define a
notion of the weight between two collections of groups.

DeriniTION 5. Let F(P, n) be as defined in Section II.B. For two
subsets of groups, B, C = M, let
1

Wae =5~ FypiFy.
|B||C| (H;Xc

The quantity Wp ¢ keeps track of the relative weight between
two (possibly overlapping) collections of groups B and C, and is a
measure that ranges between 0 and 1. The numerator measures
the total intensity of interaction between groups in the collection
B and groups in the collection C. The denominator is the product
of the sizes of the two sets B and C. With this definition in hand,
we define a notion of degree-weighted homophily.

DEriNiTION 6. Given any subset of groups @ CBCM, let
the degree-weighted homophily of (P, n) relative to B be

43. Previous work taking a different approach in the same spirit is discussed in
Diaconis and Stroock (1991).
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defined by
DWH(B; P, n)
_ WB,B + WBC,BC —_ 2WB’BC
IBI™% Y ep dr(QP. m) % + B2 Y, . dp(Q(P. m))
(5)

where the W’s are computed relative to F(P, n).

The numerator keeps track of how much of the weight in F
falls within B and within B¢, as well as (with the opposite sign)
how much weight goes between these sets of nodes. Indeed, links
within B or its complement B increase the degree-weighted
homophily, whereas links between the two subsets decrease it.
The denominator is a normalizing value, which guarantees that
the quantity defined in equation (5) is no greater than 1 in abso-
lute value.**

To see that the degree-weighted homophily has an intuitive
interpretation, consider a very simple special case. Suppose |B| =3
and that every group has the same expected number oflinks. Then,

#(links within B or B¢) — #(links from B to B°)

DWH(B; P, n) = #(total links)
(6)
where all quantities are expectations.

Let

DWHP,n) = mn}ga)& |DWH(B; P, n)|.
CBC

Thus, the degree-weighted homophily (DWH) of a given network
is the maximum level of degree-weighted homophily across dif-
ferent possible splits of the network.*?

The point of this section is the following lemma, which shows
that DWH provides a lower bound on the spectral homophily.

Lemma 3. If Q(P, n) is connected (viewed as a weighted network),
then

|h**(P,n)| = IDWH(P, n)|.

44. See Section E in Online Appendix 1 for details.

45. This is related, intuitively speaking, to a weighted version of a minimum
cut, although this degree-weighted homophily measure turns out to be the right one
for our purposes.
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The key implication is that the second eigenvalue can be
related to a “hands-on” ratio of weights in and out of groups.
This provides intuition as to why it measures homophily and re-
lates to the slowdown of averaging processes.

This DWH lower bound on the spectral homophily is tight in
the islands and two-group models, as can be verified by simple
calculations. Thus, by the remark made in Section II.C, DWH
coincides with the Coleman homophily index for the islands
model; by the formula in Section III.B it also has a simple rela-
tionship with Coleman homophily in the two-group case.

Under some additional assumptions, a general complemen-
tary upper bound can be established, which is not quite tight,
but reasonably good when the number of groups is not too large
(as explored in an extension, Golub and Jackson 2011).

VII. COMPARING AVERAGE-BASED UPDATING WITH
DIRECT CONTAGION

It is useful to compare average-based updating with a differ-
ent sort of transmission process. It turns out that the two pro-
cesses are affected in very different ways by homophily and
density. This shows that the averaging aspect of the average-
based updating process (though probably not the exact linear func-
tional form) is essential for producing the results discussed above.
It also shows, more generally, that different natural processes
have starkly different dependencies on the network structure.

VII.A. Direct Contagion Processes

Loosely, let us say that a dynamic process on a network is a
“direct transmission process” if it is characterized by travel along
shortest paths*® in the network. More formally, we simply con-
sider a direct contagion process to be any process such that the
time to converge is proportional to the average shortest path be-
tween nodes in a network.*’

46. Standard network definitions, such as that of a shortest path, are omitted.
They can be found in Jackson (2008b).

47. As will become clear, one could replace “average shortest path” with “max-
imum length shortest path” (network diameter) and the conclusions below would
still hold.
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Ficure IV

Illustration of the simple diffusion process where every node passes infor-
mation to all of its neighbors at each date, =1, 2, ... Panels A through F show
how an initial piece of information gradually spreads through the whole
network.

This covers a variety of processes. For example, consider a
game where an agent is willing to choose action 1 (e.g., buy a new
product) as soon as at least one of his or her neighbors does. Let
us examine the (myopic) best response dynamics of such a pro-
cess. If we begin with some random agent taking action 1, what
is the time that it will take for the action to spread to others in
the society, on average? That time will be determined by the
average network distance between the initial agent who takes
action 1 and any other agent in the society. This class of pure
contagion processes also models the spread of some diseases,
ideas or rumors—where an agent is either “infected” or not, “in-
formed” or not, and so forth—and where the time it takes for
something to diffuse from one agent to another is proportional
to the length of the shortest path between them. The class also
includes broadcast processes, where nodes communicate to all
neighboring nodes in each period, as well as processes where
the network is explicitly navigated by a traveler using some
sort of addressing system. Such contagion processes serve as a
useful point of comparison to the average-based updating that we
have considered. An example of a direct contagion process oper-
ating is depicted in Figure IV.

Direct contagion processes have an obvious measure of
speed, which is simply the average shortest path length between
pairs of nodes in the network. We denote this random variable by
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AvgDist(A(P, n)). If one is worried about the longest time it could
take to pass from some node to some other node, then the diam-
eter of the network is the right measure; we write this as
Diam(A(P, n)).*®

Such direct contagion processes are obviously idealized, but
they can easily extend to analyze more realistic phenomena.
For example, it may be more plausible to posit that each node
sends the news to each neighbor with probability = < 1, and the
decisions are independent. It turns out that this process can be
analyzed using the simpler contagion process outlined above in
which the transmission is certain. Given a network on which the
“noisy” process is supposed to happen, one merely considers a
subnetwork in which edges of the original network are included
with probability © and excluded with probability 1 — x, independ-
ently of each other. The deterministic broadcasting process
operating on this sparser subnetwork is equivalent to the noisy
process on the original network.

VII.B. The Speed of Contagion

Before discussing the speed of a direct contagion process,
2@ QPm)
D(Q(P.n))
the second-order average degree, which is a useful quantity in
analyzing asymptotic properties of multi-type random net-
works.*® If the average degree d,(Q(P,n)) is the same across
groups, then this is just the average degree, but more generally
it weights degrees quadratically across groups.
We need to restrict attention to settings satisfying certain
regularity conditions. In particular, we suppose that

(i) there exists M < oo such that max;, % <M,
(i) d(P,n) > (1+¢)logn for some ¢>0,

) log(d(P,n))
logn

we provide one more definition. Let J(P, n) =

(111 — 0, and

48. For the multi-type random networks that we examine, it turns out that the
average distance and diameter are effectively the same. This is because, as long as
clustering remains bounded away from 1, the majority of pairs of nodes in a large
network are at the maximum possible distance from each other.

49. There is a subtlety in the definition. It resembles the second moment of the
degree distribution divided by the first moment. But it is important to note that in
computing the numerator, one first takes average degrees within groups and then
squares those averages. This makes it somewhat different from a second moment
taken across nodes.
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. . 1 /P !
(iv) there exists ¢> 0 such that IO b e ek
max j, i Pry

These conditions admit many cases of interest and can be
understood as follows: condition (i) requires that there is not a
divergence in the expected degree across groups so that no group
completely dominates the network; (ii) ensures that the average
degree grows with n fast enough so that the network becomes
connected with a probability going to 1, making communication
possible; (iii) implies that the average degree grows more slowly
than n, as otherwise the shortest path degenerates to being
of length 1 or 2 (which is not of much empirical interest); and
(iv) ensures that there is some lower bound on the probability
of a link between groups relative to the overall probability of
links in the network. This last condition ensures that groups do
not become so homophilous that the network becomes discon-
nected. Nevertheless, the conditions can accommodate any arbi-
trarily high fixed level of homophily, since M and ¢ are arbitrary
parameters.

By adapting a theorem of Jackson (2008a) to our setting, we
derive the following characterizations of the average (and max-
imum) distance between nodes in a multi-type random network.
We say a statement holds asymptotically almost surely if, for
every §>0, it holds with probability at least 1—4§ in large
enough societies.

ProrosiTioN 4. If the random network process (P, n) satisfies
(i)-@v), then, asymptotically almost surely, the network
is connected. Moreover, the average distance between
nodes and the network diameter are asymptotically propor-

tional to —%" . the average distance between nodes satis-
fies® log(d(P.n))

logn

AvgDist(A(P, RO s
vEDIstA(P m) € (1-+o() =

and the diameter of the largest component satisfies

Diam(A(P,n)) € © (ﬂ)
log(d(P, n))

50. The notation o(1) indicates a factor going to 0 as n goes to infinity and ©
indicates proportionality up to a fixed finite factor.
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Proposition 4 tells us that although homophily can change
the basic structure of a network, it does not affect the average
shortest path length between nodes in the network. Moreover,
we have a precise expression for that average distance which is
the same as for an Erdos-Rényi random network where links are
formed uniformly at random with the same average degree.
Effectively, as we increase the homophily, we increase the density
of links within a group but decrease the number of links between
groups. The result is perhaps somewhat surprising in showing
that these two effects balance each other to keep average path
length unchanged; more precisely, any deviations from the

formula —%" _ that are introduced by homophily only affect
log(d(P,n))

the result by adjusting a mulitiplicative constant, and not in
the asymptotic rates.

The intuition behind the proposition can be understood in the
following manner. Suppose that every node had a degree of d and
that the network was a tree. Then the k-step neighborhood of a
node would capture roughly d* nodes. Setting this equal to n leads
to a distance of £ = igg 7 toreach all nodes, and given the exponen-
tial expansion, this would also be the average distance. The prop-
osition shows that this is exactly how the average distance
behaves even when the network is not a tree and exhibits sub-
stantial clustering, even when we introduce noise to the network
so that nodes do not all have the same degree, and even when we
add substantial homophily to the network.

CoroLLARY 3. Consider a process that has an expected conver-
gence time proportional to the average distance between
nodes. If it is run on two different random network formation
sequences satisfying (i)—(iv) that have the same second-order
average degree as a function of n, then the ratio of the ex-
pected convergence times of the two different random net-
work sequences tends to 1, asymptotically almost surely.

The foregoing results tell us that the average distance is
asymptotically not affected by homophily, and that the diameter
is affected only up to a fixed finite factor, provided there is some
minimal level of intergroup connectivity. Thus, direct contagion
processes are not affected by homophily, but are affected by the
link density in a society.

This provides an interesting contrast with the average-based
updating processes, and helps clarify when and why homophily
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matters. These results show that homophily is not affecting aver-
age path lengths in a network, and so not changing the distances
that information has to travel. The density of the network plays
that role.’! In the average-based updating processes that we have
considered, it is relative connectivity from group to group that
matters, not absolute distances. Homophily is critical in deter-
mining such connectivity ratios and thus consensus time in pro-
cesses that are dependent on relative interaction across groups,
while density is inconsequential. In contrast, if all that matters is
overall distance, then homophily does not make a difference and
instead only density is important.

VII.C. A Remark on Asymptotics

In Theorem 1, as well as in Proposition 4, a convergence time
has a network structure statistic in the denominator and a log n
in the numerator. In particular,

Y. . log(n)
CT(E’ e n)> ) log (\hspec%P,nn) |

while the average distance satisfies (with a ~b meaning that ¢
tends to 1 in probability)

logn

AvgDist AP, n)) ~ ——=——.
vgDist(A(P, n)) log@(P. 1)

Thus it may appear that the asymptotic behavior of these two
quantities in n is similar. This need not be the case. In particu-
lar, assumptions (ii) and (iii) allow for a wide range of variation
in the second-order average degree d(P,n): it may grow as
slowly as log?n or as quickly as n¥er. On the other hand, under
the assumptions of Definition 3, the denominator in the consen-
sus time estimate cannot diverge to infinity. Thus, the growth
rates of average distance and consensus time may behave very

51. One other thing is worth pointing out. The multi-type random network
model allows for many different degree distributions, simply by allowing different
groups to have different expected degrees. Nonetheless, the average distance be-
tween nodes depends only on the (second-order) average degree and not on any
other moments, provided (i-iv) are satisfied. Other aspects of the degree distribu-
tion can matter in determining average distance if the conditions are violated. This
happens, for example, in other classes of random graph models that have extreme
variation in the degree distribution (unbounded variance as the number of nodes
increases), as in scale-free networks.
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differently under the assumptions for which our results are
valid.

Moreover, the two formulas above, taken together, imply
some more precise quantitative information about the compari-
son between consensus time and the time it takes for an infection
to spread. In particular,

CT(Z;AP.n)) _ log(d(P,n))

=~

AvgDist(A(P, n)) log (lhm}P n)\)

Therefore, when the asymptotics have “kicked in” and the
propositions of this article give close approximations (which, in
numerical experiments, occurs for values of n on the order of
1,000), we can make an explicit prediction, with an error bound,
about which process is faster and by how much, knowing only the
quantities in the above ratio.

In particular, suppose there are two large multi-type net-
works with the same second-order average degree d(P,n). One
network has a spectral homophily of 1.2, while the other has a
spectral homophily of 5. Then the above ratio of convergence
times will be at least 4 times as large for the more homophilous
lfif(l? is about 8.8, and there is an approximation
error of a little more than a factor of 2). By Proposition 4, this
change in ratio is not due to the average distance, which stayed
essentially the same, but purely due to the change in consensus
time. This highlights the sense in which homophily matters for
average-based updating but not for direct contagion.

Because the approximations ~ and ~ in the expressions
work well even for networks of about 1,000 nodes, there is
fairly precise quantitative information in these results beyond
the asymptotics in n.

network (because

VIII. CONCLUDING REMARKS

Homophily has long been studied as a statistical regularity in
the structure of social interactions. In this article, we propose a
general measure of it—spectral homophily—and show that it is
useful for characterizing the speed of convergence in natural
average-based updating processes.

Homophily slows down the convergence of average-based
updating according to the simple formula of Theorem 1, and
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network density does not matter for the asymptotics of consensus
time. In stark contrast, only density, and not homophily, matters
for the speed of contagion processes.

The different relationships that we have uncovered between
network characteristics and the speed of information flow have
strong intuitions behind them. Under average-based updating
processes, what is critical to convergence is the weight that
nodes put on nodes of other types relative to those of their own
type. Increasing the overall number of links while maintaining
the homophily will not speed up convergence. With direct conta-
gion processes only the average distance between pairs of agents
matters. Adding homophily changes who is close to whom, but it
does not change the average lengths of the shortest paths branch-
ing out from each node. Although the benchmarks we have ana-
lyzed turn out to represent extreme points, they offer some
insight into the key elements of network structure that matter
for learning and diffusion processes.

One can also compare our results to those of rational learning
models that have been studied elsewhere, with the goal of under-
standing which models are more appropriate in different settings.
Mueller-Frank’s (2012) study of dynamic Bayesian updating
in an arbitrary network entails that adding links to a network
can only decrease the heterogeneity of observed outcomes. In
average-based updating, adding links can strictly increase the
observed heterogeniety of choices (by decreasing the rate of
convergence) if those links are added in a way that increases
homophily. Thus, these two models make different predictions
about comparative statics, and these predictions are testable.?
While there have been some studies of how segregation based on
exogenous characteristics, such as race, affects certain observed
outcomes, such as school performance and happiness (e.g.,
Echenique, Fryer, and Kaufman 2006), we are not aware
of any empirical work that has explored in detail whether
such segregation leads to slower convergence to consensus or
greater cross-sectional variation in beliefs or behaviors.?® Field

52. Of course, some additional theoretical work would have to be done to make
the predictions directly comparable; the comparison of the results in this discussion
is somewhat heuristic.

53. The work of Bisin, Moro, and Topa (2011) asks some related questions in the
course of a structural empirical exercise focused on smoking behavior in schools.
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experiments may be a valuable tool to approach these important
questions (see the discussion in Section I1.D).

Beyond the conclusions about dynamics on networks, our re-
sults relating the second-largest eigenvalue of the interaction
matrix to homophily, as well as the representative-agent the-
orem, could be useful more broadly. These provide general theor-
etical tools for a parsimonious mean-field approach to studying
networks with homophily. The representative-agent updating
matrix (and thus the spectral homophily) can be estimated con-
sistently as long as we can obtain a consistent estimate of the
relative interaction probabilities an agent has with various
types. For example, in the network data on high school friend-
ships in the National Longitudinal Study of Adolescent Health
(see Golub and Jackson 2012), the relative frequencies of friend-
ships among various races may be reasonably estimated based on
the relative frequencies of nominations in surveys. On the other
hand, the absolute densities of links between various races are
much more difficult to infer, due to subjects’ imperfect recall and
an upper limit on the number of friends that can be named in the
survey. This suggests econometric questions—which, to the best
of our knowledge, are open—about how to estimate relative inter-
action frequencies most efficiently and how the resulting estima-
tors of spectral homophily behave. The approach also naturally
raises the issue of what other global properties of large networks
can be estimated accurately using convenient summary statistics
that avoid collecting too much local information; this is a poten-
tial avenue of further research.

Our results highlight the importance of understanding
homophily to understand the functioning of a society. This is, of
course, a first step and suggests many avenues for further re-
search, of which we mention only some obvious ones. One clear
direction for future work is considering processes that are not in
either of the benchmark classes that we have examined here. The
techniques used in deriving our conclusions are tailored to these
two classes, so making headway on other kinds of processes will
most likely involve developing some substantial new theoretical
approaches.’® For example, an interesting area to explore and

54. There are also questions regarding what sort of updating people employ.
An average-based updating rule makes the most sense when people find it difficult
to communicate precisely what signals they have observed and also what others
have observed and so forth, but instead can only communicate aggregated beliefs.
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compare results with would be the study of coordination games on
networks (different from the ones we have studied), where it has
also been found that network structure can affect both the stra-
tegic choices (Young 1998; Morris 2000; Jackson 2008b) and the
speed of convergence (Ellison 2000; Montanari and Saberi 2010).
Another interesting question is how belief dynamics look in
a model of Bayesian updating with heterogeneous priors (de-
pending on an agent’s type, which may correlate with network
position), and whether that sort of process can be readily distin-
guished in the data from myopic updating under homophily.

The study of how homophily affects communication naturally
raises the issue of how advances in technology and changes in the
media affect the structure of agents’ information networks and
the outcomes of communication. As pointed out by Rosenblat and
Mobius (2004), technology that makes interactions easier may
lead to greater network density (and lower average path length)
even as it increases homophily among groups: agents may inter-
act more but use the better technology to seek out agents more
like themselves to interact with. Our results tie this back to the
speed of convergence to a consensus in different processes and
show that average-based updating may become slower after the
introduction of a new communication technology.

Mass media outlets play a key role in the flow of information.
Thus, it is important to incorporate their effects into models of
communication. In our setting, this issue raises three broad ques-
tions—a conceptual one, an empirical one, and a theoretical one—
which we believe to be fruitful avenues for future work. The con-
ceptual one is how to model a media outlet in the type of frame-
work studied in this article. It can be modeled as a “forceful
agent” with its own agenda that influences others more than it
is influenced (see, e.g., Acemoglu, Ozdaglar, and ParandehGheibi
2010), or as a very widely observed agent that simply aggregates
and rebroadcasts along others’ information.

However the media may be modeled, there is an empirical
question of how agents are influenced by the various media con-
tent that they consume. Gentzkow and Shapiro (2012) show that
the consumption of online media content, as measured by website
visits, exhibits much less segregation than typical offline

In cases where it is easy to communicate signals directly, the weights that agents
use in updating may adjust more over time. There is some preliminary evidence in
this direction in a paper by Mobius, Phan, and Szeidl (2010).
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face-to-face interaction (somewhat surprisingly, in view of the
potential for greater choice-driven segregation online). Since dis-
agreement nevertheless persists, it is reasonable to consider the
possibility, as Gentzkow and Shapiro do, that agents weight and
process the different information they receive very differently
depending on its source. A liberal may consult conservative
media but not change his or her views, or even move to the left
as aresult. Thus, it is important to be able to estimate the weights
that describe agents’ updating and to understand how those
weights depend on the media outlet and the issue under
discussion.

There is then a theoretical question of how to extend our
results when there is heterogeneity in the weights agents place
on different neighbors, which can include media outlets. The
baseline model considered in this article has every neighbor
who is listened to being weighted equally. When heterogeneity
in weights is present, the specification of the group-level updating
matrix should change to account for the weights. We conjecture
that, once this is done, analogs of our results—ones that reduce
the study of updating in large networks to the study of homophily
in small deterministic representative-agent matrices—should be
available. However, such results do not seem easy to obtain using
the proof techniques we have used, and would constitute a sub-
stantial technical advance as well as a valuable tool for applied
modeling and estimation.

SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at QJE
online (gje.oxfordjournals.org).
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