
ONLINE APPENDIX:
A NETWORK APPROACH TO PUBLIC GOODS

Throughout the online appendix, we refer often to sections, results, and equations
in the main text and its appendix using the numbering established there (e.g., Section
2.2, Appendix A, equation (4)). The numbers of sections, results, and equations in
this online appendix are all prefixed by OA to distinguish them, and we always use
this prefix in referring to them.

OA1. Multiple Actions

This section extends our environment to permit each agent to take actions in multi-
ple dimensions, and then proves analogues of our main results. We focus on what we
consider to be the essence of our analysis—namely the equivalence of certain eigen-
value properties, and certain matrix equations, to efficient and Lindahl outcomes.
Other important matters—existence of efficient and Lindahl points, as well as their
strategic microfoundations—are not treated here, but we believe that the techniques
introduced in the main text would establish analogous results.

OA1.1. Environment. We adjust the environment only by permitting players to
take multi-dimensional actions ai ∈ Rk+, with entry d of player i’s action vector being
denoted by adi . Each player then has a utility function ui : Rnk+ → R. When we need
to think of a as a vector—i.e., when we need an explicit order for its coordinates—we
will use the following one. First we list all actions on the first dimension, then all
actions on the second dimension, etc.:

a =


a
[1]
·

a
[2]
·
...

a
[k]
·

 .

For each d ∈ {1, 2, . . . , k}, we construct the n-by-n Jacobian J[d](a) by setting

J
[d]
ij (a) = ∂ui(a)/∂adj . We define the benefits matrix:

B
[d]
ij (a; u) =


J
[d]
ij (a;u)

−J [d]
ii (a;u)

if i 6= j

0 otherwise.

The following assumptions are made on these new primitives. First, utility func-
tions are concave and continuously differentiable. Second, all actions are costly.1

Third, there are weakly positive externalities from all actions.2 Fourth, benefit flows
are connected, so that each matrix B[d](a) is irreducible, for all a. These assumptions
are very similar to those we required in the one-dimensional case.

Date: May 16, 2014.
1∂ui(a)/∂aki < 0 for all i and all k.
2∂ui(a)/∂akj ≥ 0 for all j 6= i and all k.
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OA1.2. Efficiency. The generalization of our efficiency result is as follows. Recall
that, by the Perron–Frobenius theorem, any nonnegative, irreducible square matrix
M has a left eigenvector θ such that θM = r(M)θ, where r(M) is the spectral radius.
This eigenvector is determined uniquely up to scale, and imposing the normalization
that θ ∈ ∆n (the simplex in Rn+) we call it the Perron vector of M.

Proposition OA1. Consider an interior action profile a ∈ Rnk++. Then the following
are equivalent:

(i) a is Pareto efficient;
(ii) every matrix in the set {B[d](a) : d = 1, . . . , k} has spectral radius 1, and they

all have the same left Perron vector.

Proof. For any nonzero θ ∈ ∆n define P(θ), the Pareto problem with weights θ as:

maximize
∑
i∈N

θiui(a) subject to a ∈ Rnk+ .

By a standard fact, an action profile a is Pareto efficient if and only if it solves P(θ)
for some θ ∈ ∆n. The first order conditions for this problem consist of the equations∑

i θi∂ui(a)/∂adj = 0 for all j and all d. Rearranging, and recalling the assumption

that ∂uj(a)/∂adj < 0 for every i and d, we have:

(OA-1) θj =
∑
i 6=j

θi
∂ui(a)/∂adj
−∂uj(a)/∂adj

.

Given the concavity of u, these conditions are necessary and sufficient for an interior
optimum. We can summarize these conditions as the system of (matrix) equations:

(OA-2) θ = θB[d](a) d = 1, 2, . . . , k.

In summary, (i) is equivalent to the statement “system (OA-2) holds for some nonzero
θ ∈ ∆n,” and so we will treat the two interchangeably.

We can now show (i) and (ii) are equivalent. System (OA-2) holding for a nonzero
θ ∈ ∆n entails that the spectral radius of each B[d](a) is 1, because (by the Perron–
Frobenius Theorem) a nonnegative eigenvector can correspond only to a largest eigen-
value. And the same system says a single θ is a left Perron vector for each B[d](a). So
(ii) holds. Conversely, if (ii) holds, then there is some left Perron vector θ ∈ ∆n so
that the system in (OA-2) holds, which (as we have observed) is equivalent to (i). �

OA1.3. Characterizing Lindahl Outcomes. Our characterization of Lindahl out-
comes will rely on some “stacked” versions of matrices we have encountered before.
We define a stacked n-by-nk Jacobian as follows:

J(a) =
[

J[1](a) J[2](a) · · · J[k](a)
]
.

For defining a Lindahl outcome, we will need to think of a larger price matrix. In
particular, we will introduce an n-by-nk matrix

P =
[

P[1] P[2] · · · P[k]
]
,

where P
[d]
ij (with i 6= j) is interpreted as the price i pays for the effort of agent j on

dimension d.
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To generalize our main theorem on the characterization of Lindahl outcomes, we
now define a Lindahl outcome in the multi-dimensional setting. (Recall Definition 1,
and from Section 4.1 that the budget balance condition can be restated as Pa∗ ≤ 0.)

Definition OA1. An action profile a∗ is a Lindahl outcome for a preference profile
ui if there is an n-by-nk price matrix P, with each column summing to zero, so that
the following conditions hold for every i:

(i) The inequality

(B̂Bi(P)) Pa ≤ 0

is satisfied when a = a∗;

(ii) for any a such that B̂Bi(P) is satisfied, we have a∗ �ui a.

Definition OA2. The action vector a ∈ Rnk+ is defined to be scaling-indifferent if
a 6= 0 and J(a)a = 0.

We will establish that Lindahl outcomes are characterized by being scaling-indifferent
and Pareto efficient.

Theorem OA1. Under the maintained assumptions, an interior action profile is a
Lindahl outcome if and only if it is scaling-indifferent and Pareto efficient.

Proof. First, we show Lindahl outcomes are scaling-indifferent and Pareto efficient.
Suppose a∗ ∈ Rnk++ is a nonzero Lindahl outcome. Its Pareto efficiency follows by the
standard proof of the first welfare theorem. Let P be the price matrix in Definition
OA1. Consider the following program for each agent i, denoted by Πi(P):

maximize ui(a) subject to a ∈ Rnk+ and B̂Bi(P).

By definition of a Lindahl outcome, a∗ solves Πi(P). By the assumption of connected
benefit flows, there is always some other agent j and some dimension d so that i is

better off when adj increases. So the budget balance constraint B̂Bi(P) is satisfied
with equality. Note that this is equivalent to the statement Pa∗ = 0.

Because a∗ is interior, the gradient of the maximand ui (viewed as a function of a)
must be orthogonal to the budget constraint Pa ≤ 0. In other words, row i of J(a∗)
is parallel to row i of P. This combined our earlier deduction that Pa∗ = 0 implies
J(a∗)a∗ = 0.

We now prove the converse implication of the theorem. Take any scaling-indifferent
and Pareto efficient outcome a∗ ∈ Rnk+ . Because a∗ is Pareto efficient, by Proposition

OA1 there is a nonzero vector θ such that θJ[d](a∗) = 0 for each d. We need to find

prices supporting a∗ as a Lindahl outcome. Define the matrix P[d] by P
[d]
ij = θiJ

[d]
ij (a∗)

and note that for all j ∈ N we have

(OA-3)
∑
i∈N

P
[d]
ij =

∑
i∈N

θiJ
[d]
ij (a∗) =

[
θJ[d](a∗)

]
j

= 0,

where
[
θJ[d](a∗)

]
j

refers to entry j of the vector θJ[d](a∗).

Now, recalling the definition of the n-by-nk matrix P, we see that each column of
P sums to zero. Further, each row of P is just a scaling of the corresponding row of
J(a∗). We therefore have:

(OA-4) Pa∗ = 0,
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and these prices satisfy budget balance.
Finally, we claim that, for each i, the vector a∗ solves Πi(P). This is because

the gradient of ui at a∗, which is row i of J(a∗), is normal to the constraint set by

construction of P and, by (OA-4) above, a∗ satisfies the constraint B̂Bi(P). The
claim then follows by the concavity of ui. �

OA2. Transfers of a Numeraire Good

It is natural to ask what happens in our model when transfers are possible. If
utility is transferable—that is, if a “money” term enters additively into all payoffs,
but utility functions are otherwise the same—then Coasian reasoning implies that the
only Pareto-efficient solutions involve action profiles that maximize

∑
i ui(aX, aY, aZ).

But in general, agents’ preferences over environmental or other public goods need not
be quasilinear in any numeraire—especially when the changes being contemplated are
large. It is in this case that our analysis extends in an interesting way, and that is
what we explore in this section, via two different modeling approaches.

OA2.1. The Multiple Actions Approach. We can use the extension to multiple
actions to consider what will happen if we permit transfers of a numeraire good. We
extend the environment in the main part of the paper by letting each agent choose, in
addition to an action level, how much of a numeraire good to transfer to each other
agent. We model this by assuming that each agent has k = n dimensions of action.
For agent i, action aii corresponds to the actions we consider in the one-dimensional
model of the paper and action aji for j 6= i corresponds to a transfer of the numeraire
good from agent i to agent j. We assume agents’ utility functions are concave, and
that all of them always have strictly positive marginal value from consuming the
numeraire good. For agent i, the transfer action aji (for j 6= i) is then individually
costly (as i can then consume less of the numeraire good) but provides weak benefits
to all others. Moreover, we assume for this section that ∂ui/∂a

j
j > 0 for every i

and j—meaning that the original problem has strictly positive externalities.3 As a
consequence, each B[d] is irreducible. This extension of the single action model to
accommodate transfers fits the multiple actions framework above and we can then
simply apply Proposition OA1 and Theorem OA1 to show how our results change
once transfers are possible.

Proposition OA1 and Theorem OA1 show that the main results of our paper ex-
tend in a natural way to environments with transfers. However, it is important to
note that although we are assuming transfers are possible, we are not assuming that
agents’ preferences are quasi-linear in any numeraire. Under the (strong) additional
assumption of transferable utility, the problem becomes much simpler, as mentioned
above.

OA2.2. An Inverse Marginal Utility of Money Characterization of Lindahl
Outcomes with a Transferable Numeraire. It is possible to extend Theorem 1 in
a different way to a setting with a transferable, valuable numeraire. Consider the basic
setting of the paper in which each player can put forth externality-generating effort
on one dimension, and suppose that each agent’s utility function is ui : Rn+×R→ R.
We write a typical payoff as ui(a;mi), where a ∈ Rn+ is an action profile as in the

3We suspect this assumption can be relaxed substantially without affecting the conclusions.
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main text, and mi is a net transfer of “money”—a numeraire—to agent i. We assume
preferences are concave and continuously differentiable on the domain Rn+ × R. We
also assume that for all fixed vectors m = (m1,m2, . . . ,mn), the utility functions
satisfy the maintained assumptions of Section 2.2 in the main text. We assume that
the numeraire is valuable: ∂ui

∂mi
> 0 on the whole domain. Finally, to streamline

things, we assume that ∂ui
∂ai

(a;mi) = −1 for all values of (a;mi). The benefits matrix
is defined as in Section 2.3.

Now we can define a Lindahl outcome in this setting, taking all prices to be in
terms of the numeraire.

Definition OA3. An outcome (a∗; m∗) is a Lindahl outcome for a preference profile
u if

∑
i∈N mi = 0 and there is an n-by-n matrix (of prices) P so that the following

conditions hold for every i:

(i) The inequality

(BBi(P))
∑
j:j 6=i

Pijaj +mi ≤ ai
∑
j:j 6=i

Pji

is satisfied when (a; m) = (a∗; m∗);
(ii) for any (a;mi) such that the inequality BBi(P) is satisfied, we have

(a∗;m∗i ) �ui (a;mi).

We can now characterize the Lindahl outcomes in this setting in a way that is
reminiscent of both Proposition 1 in Section 3 and of Theorem 1. To do this, we
make one final definition.

Define

µi(a,mi) =

[
∂ui
∂mi

(a,mi)

]−1
.

This is the reciprocal of i’s marginal utility of the numeraire at a given outcome. We
will write µ(a,m) for the vector of all these inverse marginal utilities.

Proposition OA2. An interior outcome (a; m) is a Lindahl outcome if and only if

(OA-5) θ = θB(a; m)

where θ = µ(a,m) and

(OA-6) mi = θi ·

(
ai −

∑
j

Bijaj

)
for each i.

Without going through the proof, which is analogous to that of Theorem 1, we
discuss the key parts of the reasoning. Given a pair (a; m) such that (OA-5) and
(OA-6) hold, we will construct prices supporting (a; m) as a Lindahl outcome. For
i 6= j, we set

Pij = θiBij(a,m).

The prices agent i faces are proportional to his marginal utilities for various other
agents’ contributions, so i is making optimal tradeoffs in setting the aj for j 6= i. Now
we turn to the “labor supply decision” of agent i, i.e., what ai should be. The wage
that i makes from working is θi per unit of effort, because (by equation OA-5) we can
write

∑
j:j 6=i Pji =

∑
j:j 6=i θjBji = θi. Thus, recalling that the price of the numeraire
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is 1 by definition, we have

price of numeraire

i’s wage
=

1

θi
=

1

[∂ui/∂mi]−1
=
∂ui/∂mi

1
.

Recalling that 1 is the marginal disutility of effort (by assumption), this shows that
the price ratio above is equal to the corresponding ratio of i’s marginal utilities.

Finally, the condition mi = θi ·
(
ai −

∑
j Bijaj

)
can be written, in terms of our

prices, as

mi = ai
∑
j:j 6=i

Pji −
∑
j:j 6=i

Pijaj.

In rewriting the first term, we have again used (OA-5). This equation just says that
i’s budget balance condition holds: The net transfer of the numeraire he obtains
is the difference between the wages paid to him and what he owes others for their
contributions.

This shows that the conditions of Proposition OA2 are sufficient for a Lindahl
outcome. The omitted argument for the converse is simpler; the proof essentially
involves tracing backward through the reasoning we have just given.

The important thing to note about the conditions of Proposition OA2 is that, like
the characterization of Theorem 1, there are no prices explicitly involved. The content
of the Lindahl solution can be summarized succinctly in an eigenvector equation. Here
the equation says that an agent’s θi, his inverse marginal utility of income (so a higher
θi corresponds to more wealth), satisfies the eigenvector centrality equation θi =∑

j Bjiθj. Equivalently, the θi’s are proportional to agents’ eigenvector centralities in

the network B(a)T. Using the walks interpretation discussed in Section 5, we can say
the following: In the presence of transfers, wealthier (higher θi) agents are the ones
who sit at the origin of large flows in the benefits matrix: They are the ones capable
of conferring large direct and indirect benefits on others.

OA3. A Group Bargaining Foundation for the Lindahl Solution

In Section 4.2.1 we argue that the Lindahl solution can be motivated as the equi-
librium outcome of a group bargaining game. In this section we flesh out those claims
more precisely.

The bargaining game begins in state s0, and the timing of the game within a period
is:

(i) A new proposer is selected according to a stationary, irreducible Markov chain
on N

(ii) The proposer ν(s) selects a direction d ∈ ∆n, where ∆n is the simplex in Rn.
(iii) All agents then simultaneously respond. Each may vote “no” or may specify a

maximum scaling of the proposed direction by selecting λi ∈ R+.
(iv) If any agent votes “no”, the proposal is rejected and we return to step (i), in

which someone else is selected to propose a direction.
(v) If nobody votes “no”, then actions a = (mini λi)d are implemented.

The game can go on for infinitely many periods. Until an agreement is reached
and actions are taken, players receive their status quo payoffs ui(0) = 0 each period;
afterward they receive the payoffs of the implemented action forever. Players evaluate
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streams of payoffs according to the expectation of a discounted sum of period payoffs.
We fix a common discount factor δ ∈ (0, 1).

We will show that efficient outcomes are obtainable in equilibrium and we will
characterize this set. More precisely, we will find the set of efficient perfect equilibrium
outcomes in this game—i.e., ones resulting in paths of play not Pareto dominated by
any other path of play.4 Let A(δ) be the set of nonzero action profiles a played in
some efficient perfect equilibrium for discount factor δ.

Proposition OA3. Suppose actions a = 0 are Pareto inefficient, that utilities are
strictly concave, and that the assumptions of Section 2.2 hold. Then A(δ) is the set
of Lindahl outcomes—or, equivalently, the set of centrality action profiles.

Before presenting the proof, we outline the main ideas of the argument here.5 First,
note that Pareto efficiency requires that, in every state, the same deterministic action
profile be agreed on during the first round of negotiations.6 Delay is inefficient as
there is discounting, and the strict concavity of utility functions means that it is also
inefficient for different actions to be played with positive probability—it would be a
Pareto improvement to play a convex combination of those actions instead. Consider
now which deterministic actions can be played. Intuitively, the structure of the game
can be interpreted as giving all agents veto power over how far actions are scaled up
in the proposed direction. This constrains the possible equilibrium outcomes to those
in which no agent would want to scale down actions. Next, we show that if there
are some agents who strictly prefer to scale up actions at the margin, while all other
agents are (first-order) indifferent, the current action profile is Pareto inefficient. The
set of action profiles that remain as candidate efficient equilibrium outcomes are those
in which all agents are indifferent to scaling the actions up or down at the margin.
Recalling Definition 3 in Section 4.1, these are the centrality action profiles. This
is why only centrality action profiles can occur in an efficient perfect equilibrium.
The proof is completed by constructing such an equilibrium for any centrality action
profile.

Proof of Proposition OA3: We begin by showing that in all Pareto efficient
perfect equilibria, a centrality action profile must be played.

Pareto efficiency requires two things. First, as there is discounting (δ < 1), it
requires that that agreement be reached at the first round of negotiations. Second,

4There will also be many inefficient equilibria. For example, for any direction, it is an equilibrium in
the second stage of the game for all agents to select the zero action profile, as none of them will be
pivotal when they do so. Requiring efficiency rules out these equilibria, but perhaps more reasonable
equilibria too.
5Penta (2011) has a similar result in which the equilibria of games without externalities converge to
the Walrasian equilibria as players become patient. As we saw in Section 4, Walrasian equilibria are
closely related to our eigenvector centrality condition. Nevertheless, the settings are quite different.
Penta (2011) considers an endowment economy, and it is important for his results that, whenever
outcomes are Pareto inefficient, there is a pair of agents that can find a profitable pairwise trade.
This does not hold in our framework.
6As defined above, our notion of Pareto efficiency requires that no sequence of action profiles can be
found that yields a Pareto improvement from the ex ante perspective. This notion is quite strong,
as the first step in the argument demonstrates. We could instead require only that, in each period,
a Pareto efficient action profile be played. Under this weaker condition, we conjecture a version of
Proposition OA3 holds in the limit as δ → 1.
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Pareto efficiency requires that, almost surely, some particular action profile be played
on the equilibrium path, regardless of the state reached in the first period. Toward
a contradiction, suppose there is immediate agreement but that different agreements
are reached in different states that occur with positive probability. Let a(s) be the
actions played in equilibrium in state s. The probability of being in state s for the first
round of negotiations is p(s0, s). As utility functions are strictly concave, a Pareto
improvement can be obtained by the players choosing strategies that result in the
deterministic action profile a =

∑
s∈S p(s0, s)a(s) being played in all states.

So let a be the nonrandom Pareto efficient action profile on which players imme-
diately agree in some efficient perfect equilibrium of the game. We will show it is a
centrality action profile. If J(a)a has a negative entry, say i, then player i did not
best-respond in stage (iii) of the game, in which a scaling was selected. By choosing
a smaller λi (for example, the largest λi such that [J(λid)d]i ≥ 0), that player would
have secured a strictly higher payoff.

Therefore, J(a)a ≥ 0. We claim this holds with equality. Suppose, by way of
contradiction, that it does not. Then

D(a)−1J(a)a 	 0,

where D(a) is a diagonal matrix with Dii(a) = −Jii(a) and zeros off the diagonal.
We then have (D(a)−1J(a) + I) a = B(a)a 	 a. By irreducibility of B(a), there
then exists an a′ such that B(a)a′ > a′ (with strict inequalities in each entry). The
Collatz–Wielandt formula (Meyer, 2000, equation 8.3.3) says that r(B(a)) is given
by:

min
a′i

[B(a)a′]i
a′i

.

Thus, r(B(a)) > 1 and, by Proposition 1, a is Pareto inefficient, which is a contra-
diction.

Thus, we have established that J(a)a = 0. Because the action profile 0 is not
Pareto efficient by assumption, we deduce that a is nonzero, and therefore it is scaling-
indifferent. Applying the definition of B, we conclude a is a centrality action profile.

To finish the proof, it remains only to show that for any centrality action profile a,
we can find a perfect equilibrium that supports it. The strategies are as follows: Any
player, when proposing a direction, suggests d = a/

∑
i ai, i.e., the normalization of

a. When responding to proposals, every player vetoes any direction other than d.
On the other hand, if d is proposed, then player i sets

(OA-7) λi = min{λ : [J(λd)d]i ≤ 0}.
This is well-defined because for λ =

∑
i ai, we have J(λd)d = λ−1J(a)a, all of whose

entries are 0 because a is scaling-indifferent. Indeed, by strict concavity of the utility
functions, [J(λd)d]i is decreasing in λ and so λi =

∑
i ai for all i. Thus direction d

is proposed and actions λd = a are selected under this strategy profile.
The proof that this is an equilibrium is straightforward. Consider i’s incentives.

Given that the other players respond to proposals as specified in this strategy profile,
the only outcomes that can ever be implemented are in the set P = {µd : 0 ≤ µ ≤
maxj 6=i λj}. Consider a subgame where someone has proposed direction d. Voting
“no” can yield only some action in P at a later period (or no agreement forever).
By definition of λi, responding with λi yields maximum utility among all points in
P ; thus, players have incentives to follow the strategy profile when responding to a
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proposal of direction d. The same argument shows that proposing a direction other
than d cannot be a profitable deviation—it will result in rejection and the imple-
mentation of something in P later—whereas by playing the proposed equilibrium, i
could obtain the payoff of a now. Finally, when a direction other than d is proposed,
players are indifferent between voting “yes” and voting “no”, because the proposal
will be rejected by the votes of the others.

OA4. Implementation Theory Foundations for the Lindahl Solution:
Formal Details

Section 4.2.2 discussed the unique robustness of Lindahl outcomes from the per-
spective of a mechanism design problem. In this section, we present the notation and
results to make that discussion fully precise.

Let UA be the set of all functions u : Rn+ → R. We denote by �u and �u the
weak and strict preference orderings, respectively, induced by u ∈ UA. The domain
of possible preference profiles7 is a set U ⊆ UnA; we will state specific assumptions on
it in our results.

A game form is a tuple H = (Σ1, . . . ,Σn, g) where:

• Σi is a set of strategies that agent i can play; we write Σ =
∏

i∈N Σi;
• g : Σ → Rn+ is the outcome function that maps strategy profiles to action

profiles.

Definition OA4. In a game form H = (Σ1, . . . ,Σn, g), a strategy profile σ ∈ Σ is
a Nash equilibrium for preference profile u ∈ U if for any i ∈ N and any σ̃i ∈ Σi, it
holds that g(σ) �ui g(σ̃i,σ−i). We define Σ∗(H,u) to be the set of all such σ.

A social choice correspondence F : U ⇒ Rn+ maps each preference profile to a
nonempty set of outcomes. Any game form for which equilibrium existence is guaran-
teed8 naturally induces a social choice correspondence: its Nash equilibrium outcome
correspondence FH(u) = g(Σ∗(H,u)). The set FH(u) describes all the outcomes the
participants with preferences u can end up with if they are left with a game form H
and they play some Nash equilibrium. We say that FH is the social choice correspon-
dence that the game form H implements9. A social choice correspondence is said to
be implementable if there is some game form H that implements it.

There are two basic normative criteria we impose on such correspondences. A
social choice correspondence F is Pareto efficient if, for any u ∈ U and a ∈ F (u), the
profile a is Pareto efficient under u. A social choice correspondence F is individually
rational if, for any u ∈ U and a ∈ F (u), it holds that a �ui 0 for all i. An individually
rational social choice correspondence is one that leaves every player no worse off than
the status quo.

We will also refer to a technical condition—upper hemicontinuity. A social choice
correspondence F is upper hemicontinuous if: For every sequence of preference profiles
(u(k)) converging compactly10 to u, and every sequence of outcomes

(
a(k)
)

with a(k) ∈
7The standard approach (e.g., Maskin, 1999) is to work with preference relations. We use sets of
utility functions to avoid carrying around two parallel notations.
8Otherwise, we can still talk about the correspondence, but it will not be a social choice correspon-
dence, which is required to be nonempty-valued.
9To be more precise, this is the definition of full Nash implementation. Since we consider only this
kind of implementation, we drop the adjectives.
10That is, the sequence (u(k)) converges uniformly on every compact set.
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F (u(k)), if a(k) → a, then a ∈ F (u). This condition has some normative appeal in
that a social choice correspondence not satisfying upper hemicontinuity is sensitive to
arbitrarily small changes in preferences that may be difficult for the agents themselves
to detect.11

Definition OA5. The Lindahl correspondence L : U ⇒ Rn+ is defined by

L(u) = {a ∈ Rn+ : a is a Lindahl outcome for u}.

Fix U . Let F be the set of implementable social choice correspondences F : U ⇒ Rn+
that are Pareto efficient, individually rational, and upper hemicontinuous. For any
u ∈ U , define the set of outcomes prescribed at u by every such correspondence:

(OA-8) R(u) =
⋂
F∈F

F (u).

This defines a correspondence R : U ⇒ Rn+. We call this the robustly attainable
correspondence.

If the set of possible preferences is rich enough, then the robustly attainable cor-
respondence is precisely the Lindahl correspondence. We can now formally state the
result mentioned in Section 4.2.2.

Proposition OA4. Suppose U is the set of all preference profiles satisfying the
assumptions of Section 2.2, and the number of players n is at least 3. Then the
robustly attainable correspondence is equal to the Lindahl correspondence: R = L.

From this proposition, we can deduce that the Lindahl correspondence is the min-
imum solution in F—it is the unique one that is a subcorrespondence of every other.
For details on this, see Section OA4.2 below.

OA4.1. Proof. We begin by recalling Maskin’s Theorem. Assuming that the num-
ber of agents n is at least 3 and that a social choice correspondence F satisfies no
veto power 12 (a condition that is vacuously satisfied in our setting), then F is imple-
mentable if and only if it satisfies Maskin monotonicity.

Definition OA6. A social choice correspondence F : U ⇒ Rn+ satisfies Maskin
monotonicity if: Whenever a∗ ∈ F (û) and for some u ∈ U it holds that

(OA-9) ∀i ∈ N, ∀a ∈ Rn+, a∗ �ûi a ⇒ a∗ �ui a,

then a∗ ∈ F (u).13

We now show that14 R ⊆ L. By the definition that R(u) =
⋂
F∈F F (u), it suffices

to show that L ∈ F , i.e., that L is an implementable, individually rational, Pareto ef-
ficient, and upper hemicontinuous social choice correspondence. First, a social choice
correspondence must be nonempty-valued; Proposition 2 in Section 4.2.1 guarantees
that L complies. By Assumption 3, the no veto power condition is vacuous in our

11The other way for upper hemicontinuity to fail is for the values of F not to be closed sets.
12A social choice correspondence F : U ⇒ Rn+ satisfies no veto power if, for every u ∈ U , whenever
there is an a ∈ Rn+ and an agent i′ such that a �ui

a′ for all i 6= i′ and all a′ ∈ Rn+, then a ∈ F (u).
13In words: If an alternative a∗ was selected by F under û and then we change those preferences to
a profile u so that (under each agent’s preference) the outcome a∗ defeats all the same alternatives
that it defeated under û and perhaps some others, then a∗ is still selected under u.
14For two correspondences F, F ‡ : U → Rn+, we write F ⊆ F ‡ if for every u ∈ U , it holds that

F (u) ⊆ F ‡(u). In this case, we say that F is a sub-correspondence of F ‡.
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setting. It is verified immediately from Definition 1 that L satisfies Maskin monotonic-
ity.15 Thus, L is implementable by Maskin’s Theorem. Also, L is individually rational
since, by definition of a Lindahl outcome, each agent prefers a Lindahl outcome to
0, which is always feasible. By the standard proof of the First Welfare Theorem, L
is Pareto efficient (see, e.g., Foley, 1970). Similarly, the standard argument for the
upper hemicontinuity of equilibria in preferences transfers to our setting.

Now assume F is implementable, Pareto efficient, individually rational, and upper
hemicontinuous. Fix u ∈ U and a∗ ∈ L(u). We will show a∗ ∈ F (u). Define

û(a) = J(a∗; u)a.

Lemma OA1, proved later in this section, states that since F is individually rational,
Pareto efficient, and upper hemicontinuous, it follows that a∗ ∈ F (û).16 Note that
for all a ∈ Rn+, we have

û(a∗)− û(a) = J(a∗; u)(a∗ − a) ≤ u(a∗)− u(a)

by concavity of u, so (OA-9) holds. Since F is implementable, it satisfies Maskin
monotonicity, so we conclude that a∗ ∈ F (u).

The Hurwicz rationale for the Lindahl outcomes is actually more general than we
have so far stated. We will now formalize and prove this.

Let A be the set of preference profiles u satisfying the assumptions of Section 2.2.
Endow this space with the compact-open topology.17

Definition OA7. A set of preferences U ⊆ A is called rich if, for every u ∈ U and
a∗ ∈ Rn+, there is a (linear) preference profile û ∈ U defined by

(OA-10) û(a) = J(a∗; u)a

and a neighborhood of û relative to A is contained in U .

Richness of U requires that for every preference profile u ∈ U and every a∗ ∈ Rn+,
there are preferences in U that are linear over outcomes and have the same marginal
tradeoffs that u does at a∗, as well as a neighborhood of these preferences. To take
a simple example, A itself is rich.

Proposition OA5. Suppose U is rich and the number of players, n, is at least 3.
Then the robustly attainable correspondence is equal to the Lindahl correspondence:
R = L.

The proof is exactly as in Section OA4. The only thing that remains to do is to
establish the following lemma used in that proof under the hypothesis that U is rich
(the result needed in Section OA4 is then a special case).

15If û and u are as in the above definition of Maskin monotonicity and a is a Lindahl outcome
under preferences û, then using the same price matrix P, the outcome a still satisfies condition (ii)
in Definition 1.
16The proof of that lemma constructs a sequence of preference profiles (û(k)) converging to û such
that individual rationality and Pareto efficiency alone force the set F (û(k)) to converge to a∗. Then
by upper hemicontinuity of F , it follows that F (û) contains a∗.
17For any compact set K ⊆ Rn+ and open set V ⊆ Rn, let U(K,V ) be the set of all preference
profiles u ∈ A so that u(K) ⊆ V . The compact-open topology is the smallest one containing all
such U(K,V ).
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Lemma OA1. Fix u satisfying the assumptions of Section 2.2 and an a∗ ∈ L(u).
Define û as in (OA-10), i.e.,

û(a) = J(a∗; u)a.

Suppose F : U ⇒ Rn+ is a Pareto efficient, individually rational, and upper hemicon-
tinuous social choice correspondence. If U is rich, then a∗ ∈ F (û).

Proof of Lemma OA1: First assume a∗ 6= 0. (We will handle the other case at
the end of the proof.) By Lemma 2 in Section C, a∗ is interior—all its entries are
positive. Write J∗ for J(a∗; u) and B∗ for B(a∗; u).

For γ > 0, and i ∈ N , define û
[γ]
i : Rn+ → R by

û
[γ]
i (a) = J∗ii (γ + ai)

1+γ +
∑
j 6=i

J∗ijaj.

This is just an adjustment obtained from û = û[0] by building some convexity into
the costs. Note that for all γ close enough to 0, the profile û[γ] is in U by the richness
assumption.18

Choose a[k] ∈ F (û[1/k]); this is legitimate since F is a social choice correspondence,
and hence nonempty-valued. We will show that by the properties of F , a subsequence
of the sequence (a[k]) converges to a∗. Then by upper hemicontinuity of F , it will
follow that a∗ ∈ F (û[0]), as desired. The trickiest part of the argument is showing
that the a[k] lie in some compact set, so we can extract a convergent subsequence; it
will then be fairly easy to show that the limit point of that subsequence is a∗.

Let IR[γ] be the set of individually rational points under û[γ], and let PE[γ] be the
set of Pareto efficient points under û[γ]. Let a∗max = maxi a

∗
i , and define the box

K = [0, 2a∗max]
n.

Claim OA1. For all k, the point a[k] is either in K or on the ray

Z = {a ∈ Rn+ : J∗a = 0}.

To show the claim, we first establish that

IR[0] = Z.

The proof is as follows: First note that û[0](a) = J∗a. There cannot be an a such
that J∗a is nonnegative in all entries and positive in some entries.19 Thus, if J∗a is

nonzero, it must have some negative entries, i.e., û
[0]
i (a) < 0 for some i, and then

a /∈ IR[0], contradicting the fact that F is individually rational.
Next, it can be seen that for a outside the box K, we have for small enough γ

û[γ](a) ≤ û[0](a).

From this and the fact that û[γ](0) = 0 for all γ, we have the relation

IR[γ] ∩Kc ⊆ IR[0] ∩Kc.

18The key fact here is that the topology of compact convergence is the same as the compact-open
topology (Bourbaki, 1989, Chapter X, §3.4). As γ ↓ 0, the functions u[γ] converge compactly to
û, and thus any neighborhood of û under the compact-open topology contains u[γ] for sufficiently
small γ > 0. Therefore U contains these functions as well (recall the definition of richness).
19Otherwise, a∗ would not have been Pareto efficient under u: moving in the direction a would have
yielded a Pareto improvement. But a∗ is Pareto efficient—see Section 4.
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Since we have established that IR[0] = Z, the claim follows.

We now deduce that, in fact, a[k] ∈ K for all k. It is easily checked20 that if
a ∈ Z and a > a∗, then for γ > 0 we have r(B(a; û[γ])) < r(B∗) = 1, where the latter
equality holds by the efficiency of centrality action profiles. Therefore, by Proposition
1, no point on the ray Z outside K is Pareto efficient for γ > 0. This combined with
Claim OA1 shows that IR[γ] ∩ PE[γ] ⊆ K, and therefore (since F is Pareto efficient
and individually rational) it follows that a[k] ∈ K for all k.

As a result we can find a sequence (j(k))k such that the sequence
(
a(j(k))

)
k

converges

to some a ∈ Rn+. Define a(k) = a[j(k)] and set û(k) = û[1/j(k)]. Note that the û(k)

converge uniformly to û[0] on K and, indeed, on any compact set (thus, they converge
compactly to û[0]). By upper hemicontinuity of F , it follows that a ∈ F (û[0]). It
remains only to show that a = a∗, which we now do.

If a /∈ Z, then it is easy to see that for large enough k, we would have û
(k)
i (a(k)) < 0

for some i. This would contradict the hypothesis that F is individually rational.
Thus, a(k) → ζa∗ for some ζ ≥ 0. If ζ = 0, then eventually a(k) is not Pareto efficient
for preferences u(k), because (γ + ai)

1+γ with ai = 0 tends to zero as γ ↓ 0, making
increases in action arbitrarily cheap (while marginal benefits remain constant). But
that contradicts the Pareto efficiency of F . So assume ζ > 0. In that case we would
have:

Jij(a
(k); u(k))→

{
ζJ∗ij if j = i

J∗ij otherwise.

Thus,
B(a(k); u(k))→ ζB∗.

Recall from Section 4 that r(B∗) = 1. Since the spectral radius is linear in scaling
the matrix and continuous in matrix entries, it follows that

r(B(a(k); u(k)))→ ζ,

By the Pareto efficiency of F , we know that r(B(a(k); u(k))) = 1 whenever a(k) is
interior, which holds for all large enough k since ζ 6= 0. Thus ζ = 1. It follows that
a = a∗ and the argument is complete.

It remains to discuss the case that a∗ = 0 is a Lindahl outcome. In that case, by
Proposition 7 in Section D (or simply the First Welfare Theorem), the outcome 0
is Pareto efficient. It follows that there cannot be any a ∈ Rn+ such that J(0; u)a
is nonzero and nonnegative; for if there were, we would be able to find a (nearby)
Pareto improvement on 0 under u. There are thus two cases: (i) J(0; u)a has at least
one negative entry for every nonzero a ∈ Rn+; or (ii) there is some nonzero a∗∗ ∈ Rn+
such that J(0; u)a∗∗ = 0.

In case (i), it follows by concavity of u that 0 is the only individually rational and
Pareto efficient outcome under û. So a∗ ∈ F (û).

In case (ii), J(0; u)a∗∗ = 0 can be rewritten as B(0; u)a∗∗ = a∗∗. The Perron-
Frobenius Theorem implies that a∗∗ has only positive entries (because it is a right

20We do a very similar calculation below in this proof.
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eigenvector of B(0; u), which is nonnegative and irreducible by our maintained as-
sumptions). Now, recall the argument we carried through above in the case a∗ 6= 0,
involving a sequence of utility functions converging to û. This argument goes through
without change if we replace all instances of J∗ by J(0; u); all instances of B∗ by
B(0; u); and if we redefine21 a∗ = βa∗∗ for any β > 0. That shows that βa∗∗ ∈ F (û)
for every β > 0. Now, since F is an upper hemi-continuous correspondence, its values
are closed: in particular, the set F (û) is closed. So 0 ∈ F (û) as well, completing the
proof.

OA4.2. The Lindahl Correspondence as the Smallest Solution Satisfying the
Desiderata. In Section OA4, we defined a set F of solutions having some desirable
properties (those that are Pareto efficient, individually rational, and upper hemicon-
tinuous) and showed that the Lindahl correspondence satisfies L(u) =

⋂
F∈F F (u).

After stating that result in Proposition OA4, we claimed that this implies that L is
the unique minimum correspondence in F . In this section, we supply the details to
make that statement precise, and contrast the notion of a minimum solution with the
weaker notion of a minimal one.

Let U be a set of problems or environments (in our case, preference profiles) and let
X be a set of available allocations (in our case, action profiles in Rn+). Fix a particular
set F of nonempty-valued correspondences F : U ⇒ X.22 Given F,G ∈ F , recall
that we say F = G if F (u) = G(u) for every u ∈ U .

Definition OA8. An F ∈ F is a minimum in F if: for every G ∈ F and every
u ∈ U , we have F (u) ⊆ G(u).

This differs from the definition of a minimal social choice correspondence:

Definition OA9. An F ∈ F is minimal in F if: there is no G ∈ F satisfying
G(u) ⊆ F (u) for every u ∈ U , with strict containment for some u ∈ U .

Minimal correspondences exist under fairly general conditions (of the Zorn’s Lemma
type); the existence of a minimum is a more stringent condition.23 However, what
the minimum lacks in general existence results it makes up for in uniqueness in the
cases where it does exist. When a minimum exists, it is uniquely determined. (In
contrast, there may in general be multiple correspondences that are minimal in F .)

Proposition OA6. If each of F and G is a minimum in F , then F = G.

Proof of Proposition OA6: Take any u ∈ U . By definition of F being a minimum
in F , we have F (u) ⊆ G(u). By definition of G being a minimum in F , we have
G(u) ⊆ F (u). Thus F (u) = G(u). Since u was arbitrary, this establishes the equality.

21Except as the argument in the definitions of J∗ or B∗.
22In our case, these are the Nash-implementable, upper hemi-continuous correspondences F so that,
for each u ∈ U , the set F (u) contains only Pareto efficient outcomes that leave nobody worse off
than the endowment. But nothing in the present section relies on this structure.
23Suppose F is a minimum in F . We will show it is minimal in F . Suppose we have G ∈ F such that
G(u) ⊆ F (u) for all u ∈ U . By definition of F being a minimum it is also the case that F (u) ⊆ G(u)
for every u ∈ U . Thus G = F and it is impossible for G(u) to be strictly smaller than F (u), for
any u. So F is, indeed, minimal. In particular, existence of a minimum in F implies existence of a
minimal correspondence in F . The converse does not hold.
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We can give a more “constructive” characterization of the minimum that connects
it with our discussion in Section OA4.

Proposition OA7. If F is a minimum in F , then F (u) =
⋂
G∈F G(u) for every

u ∈ U .

Proof of Proposition OA7: Define the correspondence H : U ⇒ X by H(u) =⋂
G∈F G(u). (At this point nothing is claimed about whether H is in F .) Now take

any u ∈ U . By definition of F being a minimum in F , for every G ∈ F we have
F (u) ⊆ G(u). Thus, F (u) lies in the intersection of all the sets G(u): that is, F (u) ⊆
H(u). On the other hand, since F ∈ F is one of the correspondences over which the
intersection

⋂
G∈F G(u) is taken, we have the reverse inclusion H(u) ⊆ F (u). Since

u was arbitrary, we have shown24 F = H.

OA5. The Lindahl Solution and Coalitional Deviations: A Core
Property

Section 4.2.3 argues that the Lindahl solution is robust to coalitional deviations in
a certain sense. In this section we make those claims precise.

Formally, we make the following definition.

Definition OA10. An action profile a is robust to coalitional deviations if there is
no nonempty coalition M ⊆ N and no other action profile a′ so that:

(i) a′i = 0 for all i /∈M ;
(ii) each i ∈M weakly prefers a′ to a;

(iii) some i ∈M strictly prefers a′ to a.

Action profiles robust to coalitional deviations correspond to those that are in the
β-core, which in this environment are the same as those in the α-core. The α-core is
defined by a deviating coalition first choosing their actions to maximize their payoffs
and then the other players choosing actions to punish the deviating coalition given
what has happened. The β-core is defined by the non-deviating players first choosing
their actions to punish the deviating coalition, and then the deviators choosing actions
given that (Aumann and Peleg, 1960). In our setting, as action levels of 0 for the
non-deviating players always minimize the payoffs of each member of a deviating
coalition, the order of the moves does not matter.

We now state and prove a formal version of the claim made in Section 4.2.3.

Proposition OA8. If a ∈ Rn+ is a centrality action profile, then a is robust to
coalitional deviations.

Proof of Proposition OA8: Applying Theorem 1, we will work with the Lindahl
outcomes rather than the centrality action profiles. Let a∗ ∈ Rn+ be a Lindahl outcome
and P the associated price matrix, satisfying the conditions of Definition 5 (recall that
this is an equivalent definition of a Lindahl outcome, given in the proof of Theorem
1 above). Then we have

a∗ ∈ argmaxui(a) s.t. a ∈ Rn+ and
∑
j∈N

Pijaj ≤ 0.

24In particular, we see H ∈ F .
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We will refer to this convex program as the Lindahl problem. We now use these
properties of a∗ to show that it is robust to coalitional deviations. Pareto efficiency
of a∗, which follows by Proposition 1, ensures the grand coalition doesn’t have a
profitable deviation. We now rule out all other possible coalitional deviations. Toward
a contradiction, suppose a∗ is not robust to coalitional deviations, and therefore that
there exists a nonempty proper coalition M and an a′ (with a′i = 0 for i 6∈ M) for
which ui(a

′) ≥ ui(a
∗) for each i ∈ M , with strict inequality for some i ∈ M . Since

a∗ solves the Lindahl problem, we must have that the action profile a′ is weakly
unaffordable to i at prices P:

∑
j∈N Pija

′
j ≥ 0 for each i ∈M .25

There are then two cases to consider. Suppose first that there is some i ∈M such
that ui(a

′) > ui(a
∗) and so

∑
j∈N Pija

′
j > 0. If this is true, then:

(OA-11)
∑
i∈M

∑
j∈M

Pija
′
j > 0.

On the other hand,

(OA-12)
∑
i∈M

∑
j∈M

Pija
′
j =

∑
j∈M

a′j
∑
i∈M

Pij ≤
∑
j∈M

a′j
∑
i∈N

Pij = 0.

The first equality follows by switching the order of summation, the inequality holds
because Pij ≥ 0 for j 6= i, and the final equality follows from Pii = −

∑
j:j 6=i Pji for

all i. Equation (OA-12) contradicts equation (OA-11).

OA6. Irreducibility of the Benefits Matrix

In Assumption 3, we posited that B(a) is irreducible—i.e., that it is not possible
to find an outcome and a partition of society into two nonempty groups such that, at
that outcome, one group does not care about the effort of the other at the margin.

How restrictive is this assumption? We now discuss how our analysis extends
beyond it. Suppose that whether Bij(a) is positive or 0 does not depend on a, so that
the directed graph describing whose effort matters to whom is constant, though the
nonzero marginal benefits may change as we vary a. Let G be a matrix defined by

Gij =

{
1 if i 6= j and Bij(a) > 0 for all a

0 otherwise.

We say a subset S ⊆ N is closed if Gij = 0 for every i ∈ S and j /∈ S. We say S is
irreducible26 if G is irreducible when restricted to S.

We can always partition N into some closed, irreducible subsets

S(1), S(2), . . . , S(m)

and a remaining class T of agents who are in no closed, irreducible subset. The utility
of any agent in a set S(k) is independent of the choices of anyone outside the set (and
these are the minimal sets with that property). So it seems reasonable to consider

25Suppose
∑
j∈N Pija

′
j < 0 for some i ∈ M . It follows that, while satisfying the assumption∑

j∈N Pija
′
j ≤ 0, every aj for j 6= i can be increased slightly; by Assumption 3, this makes i better

off.
26For more details on how the Perron-Frobenius theory extends to the non-irreducible case, see
(Meyer, 2000, pp. 694–695).
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negotiations restricted to each such set; that is, to take the set of players to be S(k).
All our analysis then goes through without modification on each such subset.

When entries Bij(a) change from positive to zero depending on a, then the analysis
becomes substantially more complicated, and we leave it for future work.

OA7. Endogenous Status Quo: Comparing Nash and Lindahl
in a Star Example

This section builds on the example in Section 5.2 which analyzed regular graphs.
To shed more light on how Nash and efficient outcomes are related, this section
considers a particular asymmetric graph. As before, G is an undirected, unweighted
graph (gij = gji ∈ {0, 1}), with no self-links (gii = 0) describing which agents are
neighbors. However, now we let G have a star structure with 4 agents in which agent
1 is the center agent, linked to all other agents, and there are no other links. Suppose
utility functions have the following functional form

ui(a) = log

(
ai + δ

∑
j

gijaj

)
− ai.

For δ ∈ [0, 1/3), results from Ballester, Calvó-Armengol and Zenou (2006) and
Bramoullé, Kranton, and d’Amours (2014) imply that there is a unique interior Nash
equilibrium in which aNE

1 = (1− 3δ)/(1− 3δ2), and aNE
j = (1− δ)/(1− 3δ2) for j 6= 1.

We will compare the Lindahl equilibrium actions to the Nash actions. We begin
by arguing that in any Lindahl outcome, all periphery agents i = 2, 3, 4 take the
same action. First, because the Lindahl outcome is Pareto efficient,27 by Lemma 1,
it follows that Lindahl actions are strictly higher than Nash actions. As in the main
text, take the Nash equilibrium as the status quo; denote the increments over it âi;
and denote the corresponding utility functions by ûi. As we have just argued, in the
Lindahl outcome each agent takes some action âi > 0. By the extension of Theorem
1, the periphery agents take actions

âi =
∂ûi/∂â1
−∂ûi/∂âi

â1 or fi(âi) := âi
−∂ûi/∂âi
∂ûi/∂â1

= â1.

Given the functional form utilities take, fi is monotonic at positive arguments. Thus,
fixing the action the center agent agent takes such that â1 > 0, the action of each
other agent i 6= 1 in a Lindahl outcome is the same, and uniquely determined.

So the benefits matrix has the following form:

B(a) =


0 δ/(a1 + 3δa2 − 1) δ/(a1 + 3δa2 − 1) δ/(a1 + 3δa2 − 1)

δ/(a2 + δa1 − 1) 0 0 0
δ/(a2 + δa1 − 1) 0 0 0
δ/(a2 + δa1 − 1) 0 0 0

 .

The extension of Theorem 1 now implies that, for some scalar s > 0, we have

(OA-13)

(
s

√
3δ/(aLE1 + 3δaLE2 − 1)√
δ/(aLE2 + δaLE1 − 1)

, s, s, s

)
= (aLE − aNE).

27By Foley (1970) or the argument we gave after Theorem 1, but replacing Theorem 1 by its extension
to the Nash status quo case.
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Figure 1. Panel (a) shows the Nash equilibrium action levels and
Lindahl action levels for the periphery and center players in a 4 person
star network as externalities increase. Panel (b) shows the ratio of
the Lindahl actions to the Nash equilibrium actions for the center and
periphery players as externalities increase.

Moreover, the spectral radius of B(a) being 1 corresponds to the equation

3
√

3δ/(aLE1 + 3δaLE2 − 1)
√
δ/(aLE2 + δaLE1 − 1) = 1.

Taking this equation along with the first two equations in the system (OA-13) yields a
system of 3 (distinct) equations with three unknowns. Solving this system for varying
values of δ, the Lindahl equilibrium actions are plotted in Figure 1.

Figure 1 shows that as the strength of the positive externalities increases the center
agent’s Nash equilibrium action decreases. Intuitively, as externalities increase the
center agent is able to free ride more on the actions of the other agents and reduces
her own action.28 Although the Lindahl actions are Pareto efficient and internalize the
externalities through market forces, a similar pattern is observed for the Lindahl ac-
tions. As externalities increase, the center agent’s Lindahl action decreases. Holding
the benefits received from periphery agents constant, increasing externalities mean
that the center agent benefits more at the margin from the actions of the periphery
agents. However, holding the actions of the periphery agents constant, the center
agent receives higher benefits, and as these benefits increase diminishing marginal
utility sets in. As periphery agents consume less, the effect of diminishing marginal
utility is less pronounced for them. Ultimately this results in the center agent taking
a lower action in the Lindahl equilibrium as externalities increase, while the periphery
agents take higher actions. These comparative statics contrast with the analysis of
regular graphs in Section 5.2. In regular graphs, for the functional form of utilities
used in this section, agents’ Lindahl actions are invariant with respect to externali-
ties. Nevertheless, as in Section 5.2, the affect of the externalities being internalized

28The periphery agents have less scope for free-riding as they are connected to just one other agent.
At first the free-riding effect leads them to take lower Nash actions as externalities increase, but
after a while the reduced action of the center agent dominates and they take higher actions.
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through market forces in the Lindahl equilibrium is visible when comparing the Lin-
dahl actions to the Nash actions. As shown in Panel (b), the ratio of Lindahl to Nash
actions increases as externalities increase. This increase is particularly pronounced
for the center agent.

OA8. Explicit Formulas for Lindahl Outcomes

OA8.1. A Parametric Family of Preferences and a Formula for Centrality
Action Profiles. Here we provide more interpretations regarding explicit formulas
for Lindahl outcomes, following up on the discussion of Section 5.3. In that section,
we defined:29

ui(a) = −ai +
∑
j

[Gijaj +Hij log aj] .

for non-negative matrices G and H with zeros on the diagonal, assuming r(G) < 1.
Letting hi =

∑
j Hij, the (eigenvector) centrality property of actions boils down to

a = h + Ga or

(OA-14) a = (I−G)−1h.

Note that the vector a is well-defined and nonnegative30 by the assumption that
r(G) < 1. These centrality action profiles (in the sense used throughout our pa-
per) correspond to agents’ degree centralities, Bonacich centralities, or eigenvector
centralities on some network M, for specific parametrizations of the above utility
functions.

OA8.2. Degree Centrality. To obtain agents’ degree centralities as their centrality
actions, we set H = M and let G = 0. Then equation (OA-14) says that a = h.
When costs are linear in one’s own action and benefits are logarithmic in others’
actions, then an agent i’s contribution is determined by how much he benefits from
everyone else’s effort at the margin: the sum of coefficients Hij as j ranges across the
other agents. The agents who are particularly dependent on the rest are the ones
who are contributing the most.

OA8.3. Bonacich Centrality. To obtain agents’ Bonacich centralities as their cen-
trality actions, we set G = αM for α < 1/r(M), and let each row of H sum to 1.
Dropping the arguments, the defining equation for Bonacich centrality31 says that for
every i, we have:

βi = 1 + α
∑
j

Mijβj.

Thus, every node gets a baseline level of centrality (one unit) and then additional
centrality in proportion to the centrality of those it is linked to. To shed further light
on this result, recall the definitions and notation related to walks from Section 5, and
let

29These should be viewed as functions ui : Rn+ → R∪{−∞}, with 0 · log 0 understood as 0. In other
words, preferences should be completed by continuity to the extended range. No result in the paper
is affected by this slight departure from the framework of Section 2.
30See Ballester, Calvó-Armengol, and Zenou (2006, Section 3).
31An important antecedent was discussed by Katz (1953).



20 ONLINE APPENDIX

Vi(`; M) =
∑

w∈W↓
i (`;M)

v(w; M).

This is the sum of the values of all walks of length ` in M ending at i. Then we
have:

Fact OA1. βi(M, α) = 1 +
∑∞

`=1 α
`Vi(`; M

T).

Fact OA1 is established, e.g., in Ballester, Calvó-Armengol, and Zenou (2006, Sec-
tion 3). Thus, the Bonacich centrality is equal to 1 plus a weighted sum of values of
all walks in MT terminating at i, with longer walks downweighted exponentially.

In contrast to the case of degree centrality treated in the previous section, it is not
only how much i benefits from his immediate neighborhood that matters in determin-
ing his contribution, but also how much i’s neighbors benefit from their neighbors,
etc.

OA8.4. Eigenvector Centrality. Eigenvector centrality is a key notion throughout
the paper. Theorem 1 establishes a general connection between eigenvector centrality
and Lindahl outcomes. However, this theorem characterizes a through an endogenous
eigenvector centrality condition—a condition that depends on B(a). In this section,
we study the special case in which action levels approximate eigenvector centralities
defined according to an exogenous network.

We continue with the specification from Section OA8.3, with one exception: We
consider networks M such that r(M) = 1.32 Thus,

a = β (M, α) .

By the Perron–Frobenius Theorem, M has a unique right-hand Perron eigenvector
e (satisfying e = Me) with entries summing to 1. As we take the limit α→ 1, agents’
Bonacich centralities become large but ai/aj → ei/ej, for every i, j. That is, each
agent’s share of the total of all actions converges to his eigenvector centrality according
to M.33 The reason for this convergence is presented in the proof of Theorem 3 of
Golub and Lever (2010); see also Bonacich (1991).

32This is just a normalization here: For any M, we can work with the matrix (1/r(M))M, as this
has spectral radius 1.
33To loosely gain some intuition for this, note that a = αMa + 1; as α→ 1, actions grow large and
we can think of this equation as saying a ≈Ma.
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