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Abstract
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1 Introduction

Many important financial markets are over-the-counter (OTC): market participants trade with

one another in decentralized transactions, rather than through an exchange. Due to search fric-

tions, traders cannot reoptimize their counterparties instantly, and so trading relationships are

persistent.1 As a result, the performance of the market—most importantly, how successfully it

facilitates access to liquidity for its users—depends on the network of these trading relation-

ships.2 In particular, an intermediary’s provision of liquidity depends on the willingness of its

own counterparties to keep trading, and access to liquidity is not uniform within realistic finan-

cial networks.3

An important subtlety is that one OTC market may be interdependent, or coupled, with

another one due to the nature of the financial instruments traded in the two markets. The

essence of the coupling is that an intermediary’s circumstances in one market influence its be-

havior in another—for example, because access to liquidity in one market is complementary

to trading in the other. A natural example of coupling comes from the market for repo lending:

short-term lending of cash secured by collateral such as bonds or other assets.4 Brunnermeier

and Pedersen (2009) argue, in the context of a centralized market, that such a coupling is an im-

portant aspect in the fragility of liquidity provision. The complementarity is as follows: when

the bond market is less liquid, traders are less willing to take a bond as collateral, so fewer loans

are extended at a given price. Conversely, repo funding is used to finance collateral (e.g., bond)

purchases, so illiquidity in the repo market reduces liquidity in the collateral market.

This paper studies coupled OTC markets and asks, in this context, the basic questions

about liquidity and its fragility. In particular: How severe is the potential evaporation of liq-

uidity during crisis times, and how does this depend on the network structures of the markets?

Modeling strategic liquidity provision as a game in two coupled trading networks, our main

1Examples of OTC markets include the market for repurchase agreements (repo), the interbank market, and
markets for credit default swaps and other derivatives. On the search frictions in OTC markets, see, for example,
Duffie, Gârleanu, and Pedersen (2007); Di Maggio, Kermani, and Song (2017); Aquilina and Suntheim (2017).

2How the network among intermediaries affects various financial outcomes is the focus of an active literature on
financial networks: see, e.g.,lub Gofman (2014); Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015); Cabrales, Gottardi,
and Vega-Redondo (2017); Di Maggio, Kermani, and Song (2017); Elliott and Hazell (2017); Elliott, Golub, and
Jackson (2014); Erol and Vohra (2017); Farboodi (2017); Malamud and Rostek (2017); Wang (2016).

3Acharya, Afonso, and Kovner (2017), for example, show that during the 2008 crisis, domestic and foreign banks
had differential access to the market for asset-backed commercial paper. Copeland, Martin, and Walker (2014),
document substantial heterogeneity in access even to tri-party repo funding in late 2008.

4Repo has become a major source of funding liquidity for banks, money market funds, security lenders, and
others. Copeland, Martin, and Walker (2014) estimate the sum of all repo outstanding on a typical day in July and
August 2008 to be $6.1 trillion. Less liquid, non-government bond repo outstanding was approximately 500 billion
Euros in the EU (≈ 10% of the entire market) and ≈ 500 bn USD (mostly agency MBS collateral) in the US; see
Baklanova, Copeland, and McCaughrin (2015) and ICMA (2016) for details.
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Figure 1: Illustrative networks of trading opportunities (for repo or collateral market) in three different states.
Left: pre-crisis network with a core-periphery structure. Middle: crisis network, with some links disrupted. This
is modeled as a random network with a given degree distribution. (The network shown has a power law degree
distribution.) Right: Network after the exit shock, which causes some intermediaries to withdraw at random.

contribution is to analyze circumstances when these markets are particularly fragile, and iden-

tify phenomena occurring in such games that have no analogue when there is only one trad-

ing network.5 We focus on how coupling can exacerbate illiquidity spirals; which networks are

particularly susceptible to this; and which interventions by policymakers can best improve the

stability and resilience of markets.6

Our model takes the perspective of a macroprudential stress test: an analyst anticipates a

crisis scenario, and asks what will happen to liquidity.7 We now describe it, using the repo/collateral

case for concreteness. There are two OTC markets: one for repo and one for collateral. The mar-

ket participants are called intermediaries. The timing of the model is illustrated in Figure 1. In

each market, a crisis network is realized, whose links specify the potential trading partners of

each intermediary in each network. This realization of the two networks is random from the

perspective of the analyst, which captures the fact that some trading opportunities may be-

come inactive due to an aggregate shock occurring at a time of crisis and will not be the same as

the networks of exposures measured during normal times.8 (Appendix A presents evidence that

during the 2008 financial crisis, links present in normal times became inoperative.) Each inter-

mediary makes a binary decision in each market: whether to be active and provide liquidity to

5We borrow the framing from Malamud and Rostek (2017) who ask analogous questions in a different context.
6An extensive networks literature has focused on a planner intervening in a network; for recent examples, see

Gofman (2017), Fainmesser and Galeotti (2017), and Galeotti et al. (2017).
7The importance of macroprudential stress tests for policymakers has been highlighted for example by Con-

stâncio (2017), Anderson et al. (2018) and Aymanns et al. (2018).
8For instance, certain counterparty relationships may be effectively shut down due to bilateral exposure limits

or other events. See, e.g., Di Maggio et al. (2017); Perignon et al. (2017).
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its counterparties. We assume payoffs such that, outside of a special circumstance that we will

discuss in a moment, an intermediary is willing to be active in each market if and only if it has

access to liquidity in both markets. (Section 2.2 discusses the reasons underlying the coupling

or complementarity we have sketched.) Note that liquidity is a local attribute: whether an inter-

mediary has access to each market depends on whether the particular intermediaries it trades

with choose to be active in the market.9 As for the “special circumstance,” some intermediaries,

chosen uniformly at random, are hit with an idiosyncratic exit shock, and if a node is hit in this

way, it is inactive regardless of others’ behavior. The fraction of idiosyncratically shocked in-

termediaries is called size of the exit shock, and it is the key parameter in the macroprudential

stress test: varying it is a way of probing how fragile the system is to random failures.

Formally, we study a strategic game of liquidity provision among the intermediaries in

the crisis network, conditional on the exit shock realization, and analyze its Nash equilibria.

Our liquidity measure is simply the equilibrium number of intermediaries willing to provide

repo and buy collateral.10 The policymaker conducting the macroprudential stress test wishes

to assess the expected equilibrium liquidity provision from an ex ante perspective. Thus, our

calculations focus on the expected liqudity measure, with expectations taken over the crisis net-

work realization (drawn according to certain flexible families of distributions) and the identities

of the intermediaries who experience the exit shock. We plot this quantity as a function of the

size of the exit shock in order to probe how sensitive liquidity outcomes are to idiosyncratic exit

realizations. A key force in the model is a sort of network-driven feedback loop. If some inter-

mediaries are forced to exit the market due to the realization of an exogenous shock, those who

are dependent on them for market access—in either market—exit as well, and this contagion

propagates through the system. This is an illiquidity spiral in the coupled networks.

Our analysis of the model yields four main results. First, coupling between OTC markets

exacerbates these illiquidity spirals: they are more severe, compared to a hypothetical case in

which the networks are not coupled. Second, they are more severe in a qualitatively stark way:

coupling creates the potential for sudden market freezes, where liquidity vanishes discontinu-

ously as we increase the size of the exit shock only slightly—a phenomenon that does not occur

without coupling. Third, the fragility of coupled OTC markets is reduced when the two networks

have more links in common—that is, when an intermediary’s counterparties in one network are

9The investment bank BNP Paribas explained its decision to close down two of its funds by saying “The complete
evaporation of liquidity in certain market segments of the US securitization market has made it impossible to value
certain assets fairly regardless of their quality or credit rating. [. . .] Traders are reluctant to bid on securities backed
by risky mortgages because they are difficult to sell on.” (“BNP Paribas Freezes Funds as Loan Losses Roil Markets,”
Bloomberg.com, August 9, 2007, as cited in Acharya, Gale, and Yorulmazer (2011)).

10In general, there may be multiple equilibria, which, as we will show, can be ranked by their liquidity. Through-
out this paper, we focus on the equilibrium that permits the maximum possible liquidity provision. Our results are
unchanged if we were to measure liquidity by the number of intermediaries active in either market.
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more likely to be counterparties in the other. Fourth, a financial system in which repo and col-

lateral are both traded OTC is significantly less resilient to an exogenous shock than a system in

which collateral (or repo) is traded on an exchange, providing everyone with access to trading

opportunities with everyone else. Thus, regulators can greatly increase stability by introducing

an exchange, even if they can do so in only one market.11

To establish these results, we begin by extending the standard supermodular models used

to study networked economies (Elliott et al., 2014; Acemoglu et al., 2015) to the coupled-network

case. In Section 3, we reduce the characterization of the maximal liquidity measure to the study

of a certain graph-theoretic notion—mutually stable sets in the final (post-shocks) network, and

give a simple algorithm for tracking the illiquidity spirals and computing the liquidity measure.

Armed with this algorithm, we can study how the expected liquidity measure depends on the

network structure. To build intuition, Section 4 considers stylized star and core-periphery net-

works.12 These cases offer the simplest introduction to a key force in the model, the role of frag-

ile connectors. A fragile connector is an intermediary whose connectedness to others is fragile

in one market, but which provides liquidity to many intermediaries in the other. In a core-

periphery network, a fragile connector would is an intermediary that is in the periphery of, say,

the collateral market and the core of the repo network: if it loses its access to the core in the

repo network, it is not able to function, and all its peripheral neighbors are disabled in the col-

lateral network. Increasing overlap between the two hubs makes this configuration less likely.

Note that fragile connectors are distinctive to the multilayer setting: in a single-layer network,

a node on the brink of being disconnected is unlikely to be pivotal to many others’ connected-

ness, because (by hypothesis) it has few active counterparties. But in a multilayer network, a

node can indeed be nearly disconnected in one network and crucial to the connectivity of the

other.

For our main results, we model the crisis network as a random network with a given de-

gree distribution, which can be specified quite flexibly; this permits idiosyncratic variation in

links while allowing the policymaker doing the macroprudential stress test to capture data or

beliefs about the network structure.13 Our approach is motivated by data from the recent fi-

nancial crisis, which shows that the distribution of crisis exposures is not well-described very

simple network shapes such as core-periphery networks, yet is also asymmetric and has non-

11This conclusion holds even in a model which abstracts away from important benefits of an exchange, such as
centralizing clearing.

12Core-periphery networks consist of some core intermediaries (all interconnected among themselves), and pe-
ripheral intermediaries, each connected only to a few core intermediaries. See, for example, Craig and Von Peter
(2014) and the overview of the literature given in Glassermann and Young (2016a).

13An emerging literature studies contagion in financial networks using supervisory data, see for example Green-
wood, Landier, and Thesmar (2015) and Duarte and Eisenbach (2015). These papers, however, do not consider the
case of coupled financial networks.
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trivial structure in its degree distribution (Appendix A discusses this in more detail). Concretely,

we can fix a full joint distribution of degrees (i.e. specify what fraction of intermediaries have

each possible number of counterparties in each network), and then study networks that are

random conditional on that data.

In such networks, we investigate market freezes in the repo and collateral markets as an ex-

treme outcome of an illiquidity spiral. In particular, we study the equilibrium liquidity measure

as we vary the size of the exit shock, increasing it from a low to a high level. As this variation

occurs, the subset of intermediaries withdrawing due to the exit shock increases in size. In a

market freeze, liquidity in both markets evaporates entirely and abruptly as we increase the

shock severity. That is, starting from a healthy amount of market and funding liquidity, the exit

of a very small set of additional intermediaries may result in the total freeze of the repo and col-

lateral markets. This stark amplification of an exit shock is caused by the coupling of the repo

and collateral markets, and is a robust outcome in “generic-looking” random networks, as op-

posed to very particular ones. For the case of large random networks we can obtain analytical

results identifying where this abrupt transition occurs. We compare this case with the alterna-

tive environment in which only one of the networks is OTC. When the other market is replaced

by a centralized exchange, markets may still freeze but liquidity evaporates continuously. That

is, starting from any initial condition, the withdrawal of an additional intermediary may only

result in a small decrease in equilibrium liquidity. Furthermore, the number of intermediaries

that have to withdraw for equilibrium liquidity to vanish is always larger when at least one mar-

ket is centralized; that is, the market is more robust in that case. These results indicate that the

network structure of the repo and collateral markets has an important impact on the resilience

of funding and market liquidity. In this sense, our results provide a novel perspective on the

illiquidity spirals in the markets for short-term secured debt that were at the heart of the global

financial crisis.

While we illustrate our results in the repo market, the applicability of our model is not

restricted to this example. As Acharya, Schnabl, and Suarez (2013) point out, banks have been

moving an increasing share of their assets off their balance sheets using special purpose vehicles

(SPVs), peaking at $1.3 trillion in 2007. These SPVs issued commercial paper that was backed,

for example, by mortgages and bought by a variety of financial institutions. Crucially, the SPVs

were endowed with explicit and implicit liquidity guarantees, forcing banks to take them back

onto their balance sheets in times of crisis. These liquidity guarantees create a coupling be-

tween the different ABCP markets since banks use the same $1 guarantee to underwrite several

guarantees simultaneously. Once one of the guarantees is activated, the bank cannot use the

same liquidity for another guarantee, changing its ability to trade in other networks.
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We discuss the related literature, and our contributions relative to it, extensively in Sec-

tion 7. To be brief, our main claim is that we offer a methodological contribution in showing

how the theory of games in coupled networks can be applied to analyze important financial

markets. Though network models have been used extensively to study over-the-counter mar-

kets and other trading relationships, to the best of our knowledge, ours is the first paper to focus

on the financial implications of coupled networks.14 The conclusions emphasized above—e.g.,

on market freezes, the benefits of centralizing at least one market, and the benefits of greater

overlap between two OTC networks—show that the theory has implications for policy-relevant

questions. At a technical level, we develop ideas from literatures on coupled networks, which

were often analyzed using heuristics, to rigorously study the conditions under which market

freezes occur; here, both the conditions we give and the proofs are new.

2 Model

2.1 Game of liquidity provision

There is a set N = {1, . . . ,n} of intermediaries. Intermediaries may trade bilaterally with other

intermediaries in a repo and a collateral market, µ ∈ {R,C }. In the repo market, a repo seller

provides financing to a repo buyer against a security as collateral. In the collateral market, in-

termediaries trade the security.

Each intermediary can trade in a given market only with a subset of other intermediaries,

which can depend on the market. The set of trading relationships in market µ during crisis

times is taken as exogenous and described by a directed network Gµ. A directed network G is a

set of nodes V (G ) together with a set E(G ) of directed links, i.e., ordered pairs (i , j ) with i , j ∈ N ,

which we often write as i → j . In the repo market, a link i → j in GR means that i provides

repo financing (a secured loan) to j , providing cash in exchange for a security and a promise to

repurchase it at a later date. We describe such a link by saying that i provides funding liquidity

to j . In the collateral market, the link i → j in GC means that i purchases collateral from j .

Therefore, we say that i provides market liquidity to j . We assume there are no self-links i → i .

Both markets share the same node set: V (GR ) = V (GC ) = N . We will call such a pair (GC ,GR ) a

multilayer network.

We focus on repo as the prime example of secured lending, but our model can be trans-

lated to any secured lending market. More generally, though we use the repo market terminol-

14Trading in single-layer networks is studied in various setups. In addition to references above, see also, for
example, Gai, Haldane, and Kapadia (2011), Duffie, Malamud, and Manso (2014), Condorelli, Galeotti, and Renou
(2016).
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ogy throughout, the same primitives can be used to study any two trading networks that are

coupled through the behavior of their nodes. See Section 2.2 for more on this.

It will be useful to define the set of an intermediaries trading partners as its neighbor-

hoods.

Definition 2.1 (Neighborhoods). The in-neighborhood of intermediary i in market µ, i.e. in

network Gµ, is the set of intermediaries whose directed links point to i ,

K −
i ,µ = { j | j → i ∈ E(Gµ)},

and can be interpreted as the set of intermediaries providing liquidity to i . The in-degree of

intermediary i in market µ is the size of the in-neighborhood d−
i ,µ = |K −

i ,µ|.
Analogously, we define the set of intermediaries that obtain liquidity from i as the out-

neighborhood K +
i ,µ by replacing j → i with i → j in the above definition. The out-degree d+

i ,µ is

defined as the number of these intermediaries.

Intermediaries play a strategic game of complete information.15 Let aR ∈ {0,1} and aC ∈
{0,1} correspond to intermediaries’ decisions of whether to be active in each market, with the

pair (aR
i , aC

i ) being intermediary i ’s action.16 An intermediary’s payoff will depend on the ac-

tions of its counterparties and the realization of an exogenous, exit shock wi to the intermedi-

ary. The outcome wi = 1 is a good, or business-as-usual, shock and wi = 0 is a bad shock.17 We

often refer the fraction of intermediaries hit by a bad shock 1−∑
i wi /n as the size or the severity

of the shock.

To describe the payoffs, it will be useful to define an auxiliary variable Sµi = ∑
j∈K −

i ,µ
aµj ,

the number of active counterparties in i ’s in-neighborhood in market µ, which depends on a−i

(because i is not an element of its own neighborhood). Then an intermediary’s payoff is

ui (a) =
π(SR

i ,SC
i )− c(wi ) if aR

i = aC
i = 1

0 otherwise
(1)

Here π(·) is a function describing the payoffs of operating with the given levels of neighborhood

activity (these depend on the network and neighbors’ decisions) and c(wi ) describes the costs

15This complete-information assumption amounts to assuming that the intermediaries know who their coun-
terparties are, and whether they are active. The assumption is not essential, and can be relaxed using recent results
in the theory of network games. But it considerably streamlines the analysis and puts the focus on the planner’s
uncertainty over how a crisis will affect the network.

16As usual, a refers to the profile of all actions, i.e. a= (aR
i , aC

i )i∈N and a−i refers to the profile of all actions other
than i ’s own.

17Examples of bad shocks include news about markets that trigger intermediaries’ internal risk limits, or the
bankruptcy of an intermediary (e.g., as a consequence of the discovery of fraud).
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of operating, which depends on one’s own shock. We take a reduced-form approach to the

actual trade: payoffs represent the consequences of intermediaries’ being active; these payoffs

can be derived from a more detailed description of intermediaries’ activities.18

The critical assumptions imposed on the ingredients of the payoff are as follows.

1. The function π is increasing in each argument, capturing that the returns to operating are

increasing in the levels of neighbors’ liquidity provision in both networks.

2. An intermediary facing at least one counterparty in each market is willing to operate given

a good shock realization: π(1,1) > c(1).

3. An intermediary having no counterparty in either market is unwilling to operate in either

market, even given the good shock realization: π(0,1) < c(1) and π(1,0) < c(1).

4. An intermediary having a bad shock realization is unwilling to operate: π(SR
i ,SC

i ) < c(0)

for all values of (SR
i ,SC

i ).

Under these assumptions, an intermediary’s best response to its in-neighbors’ actions can

be summarized as follows:

Ri (a−i , wi ) =
(1,1) if Sµi ≥ 1 for µ= R,C and wi = 1

(0,0) otherwise.
(2)

Note that the intermediary takes the same action in both markets in any best response, and so

as a shorthand in discussing equilibria and deviations, it will be without loss to let the variable

yi denote the best-response action of i in both markets, and we will often call it simply i ’s best

response. It can be written as

yi = wi ·B
(
SR

i (a−i ) ·SC
i (a−i )

)
, (3)

where we define the operator B(x) = 1 if x > 0 and B(x) = 0 otherwise.

The fact that the threshold level of activity that is required for intermediary i to operate is

equal to 1 is not essential. What is essential to the analysis we will use, which is based on the

theory of supermodular games, is that intermediary i ’s level activity (which needn’t be binary)

is weakly increasing in others’ levels of activity, and at some threshold,19 which may depend on

a combination of others’ activities, the intermediary shuts down. Analogues of our results can

18Section 2.2 below discusses some financial foundations for the strategic structure we assume.
19In particular, replacing 1 by a generalized threshold in the best-response function leads to a very similar anal-

ysis, and detailed calculations are available upon request.
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be derived in that richer environment, but the insights are seen most sharply in the special case

we study here.

2.2 Interpretation of intermediary behavior

In the previous section we outlined a simple model for intermediaries in the repo and collateral

markets. In this section we explain the key economic forces behind the intermediaries’ best

responses. Intermediaries operate in the market as middlemen: their reason for participation

is to collect spreads from intermediating repo and collateral trades. Intermediaries have an in-

centive to keep their inventory of cash and collateral small and their repo exposure flat. This

allows the intermediary to maximize the return it can earn on its capital. Given that interme-

diaries do not hold large inventories of cash or collateral, the repo and collateral markets are

effectively complements, as liquidity in one market facilitates intermediation in the other: ac-

cess to the repo market allows intermediaries to fund collateral purchases, while access to the

collateral market ensures that an intermediary can liquidate collateral in case one of its repo

counterparties defaults. It is this complementarity between repo and collateral markets that is

captured, in a very simple way, in our best response. We discuss it in more detail below.

Note that the game we have defined focuses on the intermediaries, and leaves out the

sources and destinations of funding liquidity and collateral that are external to the intermedi-

aries. These fundamental traders provide the basic demand and supply that drives the chains

of lending and re-lending we study. In the context of the game, they can be modeled as non-

strategic nodes who always set aC
i = aR

i = 1. Because they do not change the fundamental con-

nectedness properties of our networks, we omit them here. They are, however, discussed more

fully in Appendix I.

We now discuss the financial considerations behind intermediaries’ constraints and de-

cisions in more detail. Intermediaries face a regulatory capital constraint: they must hold an

amount of capital no less than some percentage of total risky assets. This creates inventory

costs, and an intermediary thus has incentives to hold a small inventory of the collateral asset

relative to the gross volume of collateral and repo that it intermediates.20

We assume that intermediaries have incentives to operate at or near the regulatory capital

constraint (DeAngelo and Stulz, 2015). This, along with the fact that they hold small inventories

(and therefore do not have much collateral to liquidate at will) means that they seek financing

in order to provide repo to another intermediary or to purchase collateral, rather than using

their own cash. We also assume that the intermediary will lend in the repo market only if it has

20Empirical evidence for dealer inventory management in equity and derivatives markets can be found for ex-
ample in Hendershott and Menkveld (2014) or Abad et al. (2016).
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access to the collateral market for immediate liquidation of counterparties’ collateral in case

they default.21

We close by illustrating an intermediary’s activity in the repo and collateral market. Sup-

pose an intermediary extends a repo loan of size ∆AR to one of its counterparties. Increasing

repo lending leaves the capital ratio unchanged22 but requires an equal increase in reverse repo

borrowing ∆LR = ∆AR .23 Note that the intermediary requires access to the collateral market

where it would liquidate the collateral in case of counterparty default on this transaction. In

other words, extending a repo loan requires access to both funding liquidity and market liquid-

ity. If an intermediary lacks access to one of the two, it is either simply unable to perform the

transaction, or faces prohibitive costs.24

Now suppose, instead, that an intermediary purchases an amount ∆AC of the collateral

asset from one of its counterparties. The intermediary obtains reverse repo to fund the initial

purchase: ∆LR = ∆AC . This transaction leads to a temporary expansion of the intermediary’s

balance sheet. The intermediary reverses this expansion by selling an amount∆AC of the collat-

eral asset to one of its other counterparties and by repaying the reverse repo loan.In summary,

purchasing the collateral asset requires access to both funding liquidity and market liquidity.

The exit shock vector w may be interpreted as the realization of uncertainty in the value

of an illiquid asset on the intermediaries’ balance sheet as the crisis unfolds. A shock realization

wi = 0 corresponds to an adverse shock that forces intermediary i to cease its intermediation

activity and become inactive. Without the adverse shock, if an intermediary can intermedi-

ate transactions without violating any of the above assumptions, its intermediation activity is

profitable. This motivates the best response functions of the liquidity provision game: As long

as intermediary i has enough trading partners active in the repo market (to provide funding

liquidity), and enough, possibly different, trading partners active in the market for collateral (to

provide market liquidity), and as long as it has not experienced an exit shock, the intermediary’s

21This is motivated by risk-management concerns: if intermediaries held on to collateral in such cases, they
would be exposed to fundamental risk in the value of the collateral (see, for example Oehmke (2014)).

22Assuming that repo lending implies a zero risk weight for the intermediary’s capital requirement.
23Realistically, the repo buyer requires a haircut on the collateral, i.e. will provide a fraction α ∈ [0,1] of the col-

lateral’s face value as funding. The haircut insures the repo buyer against the risk of a devaluation of the collateral.
The repo buyer will also require interest (r ≥ 0) per unit of repo financing. For simplicity, we assume that the
collateral is safe, i.e. that α= 1 (though the collateral may still be illiquid), and that there is no discounting, (r = 0).

24Note the similarity of our model to Acharya et al. (2011). They consider a model in which debt has a short
maturity relative to the collateral and buyers of the collateral require collateralized funding to purchase the asset
if it needs to be liquidated. Acharya et al. (2011) show that, in the presence of liquidation costs, the debt-bearing
capacity of a collateral asset is determined by the future liquidation value of the collateral, which in turn is de-
termined by its future debt-bearing capacity. Here, we consider a simplified version of this model with a binary
debt-bearing capacity depending on the availability of funding and market liquidity in the neighborhood of a given
intermediary.
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best response is to be active in both markets.25

Our model of intermediaries’ decisions to be active can be embedded in a more detailed

model, which relates them to payoffs for the intermediary. Appendix I sketches such a model,

deriving payoffs richer than those in (1) above, but giving rise to the same best responses. An

intermediary is active in a market if it makes profits from intermediating (repo or collateral).

These profits are equal to a spread charged from trading the collateral, which depends on its

access to trading partners, less a cost of doing business.

3 Equilibrium for general networks

In the following we will consider arbitrary directed networks of trading relationships, GR and

GC , for the repo and collateral markets.

3.1 Definition and existence of equilibrium

Intermediaries play a game of complete information given a realization of the exit shock. An

equilibrium in this game is a fixed point of the best-response correspondence R, whose com-

ponents are the functions Ri defined in (3).

To study these, we first introduce some notation and terminology. First, for any two vec-

tors x,y ∈Rn define the pointwise ordering

x≤y⇐⇒ xi ≤ yi for all i ∈ N .

With this ordering, we have a game of strategic complements: the best response of each agent

is monotone in its argument (holding the exit shock w fixed). Thus, a standard application of

Tarski’s fixed-point theorem shows that equilibria exist and are nicely ordered. Indeed, they

form a complete lattice, containing a greatest element (a maximal equilibrium that pointwise

dominates every other) and a least element. This lattice structure permits a rich theory of com-

parative statics: see Milgrom and Roberts (1990) and Zhou (1994).26

Following the rationale in Elliott et al. (2014), we make a best-case assumption, focusing

on the maximum equilibrium, to derive a lower bound on the cascade size. We call the maxi-

25Note that choosing to be active in a market does not imply that actual transactions occur. Instead the outcome
of the liquidity provision game constrains potential transactions in these markets.

26For similar arguments in other financial network applications, see Eisenberg and Noe (2001) or Elliott et al.
(2014).
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mum equilibrium y∗. A natural equilibrium liquidity measure is then

L (y∗) = 1

n

∑
i

y∗
i , (4)

which is simply the fraction of intermediaries that are active (i.e., willing to provide liquidity) in

equilibrium.

3.2 Equilibrium, network structure and shocks

3.2.1 Simple examples

Let us briefly consider conditions under which the maximum equilibrium will look very simple,

i.e. will be y∗ = 0 or y∗ = 1. If the exit shock vector takes the form w = 0, the equilibrium will

be y∗ = 0. Equally, for an arbitrary exit shock vector but in the absence of links between the

intermediaries, the equilibrium will be y∗ = 0. If the exit shock vector takes the form w = 1

and all intermediaries have at least one incoming link in both GC and GR , in the maximum

equilibrium, all intermediaries will choose to be active and y∗ = 1.

3.2.2 Characterization and algorithm

In general, the equilibrium of the liquidity provision game depends on two factors: the network

structure of the over-the-counter markets during the crisis and the realization of the exit shock.

We will examine this dependence.

Suppose that, after the crisis networks have been realized, their structure satisfies the fol-

lowing assumption.

Assumption 3.1. All intermediaries have at least one incoming edge in GR and GC .

In this case, for an exit shock realization w = 1, the maximal equilibrium is y∗ = 1. We can

think of this as a pre-(idiosyncratic)-shock situation, in which no assets have lost any value; our

assumption guarantees that no intermediaries withdraw from the crisis networks.27 Starting

from such a baseline, we can consider equilibrium outcomes for more interesting realizations

of the exit shock, i.e. for shock vectors with some wi = 0, to probe the fragility of liquidity

in the crisis networks. We refer to this regime as the post-(idiosyncratic)-shock regime. In the

following we will characterize how the post-shock equilibrium depends on the structure of the

crisis networks GC and GR .

27This result is stated and proved as Lemma 3 in Appendix C.1, using some terminology we introduce later in
this section. The assumption is without loss of generality in that if it is not satisfied we can simply remove the
intermediaries not satisfying it from network.
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Let W denote the set of intermediaries for which wi = 0. Let GC (W ) and GR (W ) denote the

networks after all the edges corresponding to the intermediaries in W (i.e., those have received

a bad shock, wi = 0) have been removed. To link the equilibrium outcome to the structure of

GC (W ) and GR (W ), first define a stable subset of nodes in a network G .

Definition 3.1 (Stable subset). In a network G = (V ,E), a subset V ′ ⊂ V is stable if, for each

i ∈V ′, there is a j ∈ V ′ such that ( j , i ) ∈ E . That is, every node in V ′ has an incoming edge from

V ′.

We now make an analogous definition for coupled networks.

Definition 3.2 (Mutually stable subset). Let GR and GC be directed graphs. A mutually stable

subset of the coupled network (GR , GC ) is a set V ′ of nodes that is stable in Gµ for µ ∈ {R,C }.

The existence and size of mutually stable subsets is closely related to the existence of a

maximal equilibrium in our game.

Proposition 1 (Maximal equilibrium and mutually stable subsets). In the maximal equilib-

rium y∗, the set of active intermediaries (y∗
i = 1) equals the maximal mutually stable subset of

(GR (W ),GC (W )).

In other words, if we take a stable subset of (GR (W ),GC (W )) that is maximal under set

inclusion and set their activity level to 1, we get the maximal equilibrium. That this is an equi-

librium follows from the form of R: First, none of these intermediaries have been shocked, as

the shocked ones were removed from (GR (W ),GC (W )). Second, all intermediaries in such a

set have, by definition of a mutually stable subset, at least one incoming link in both networks

from other intermediaries in the set, so, by definition of R, is an equilibrium for all of them

to be active. To complete the proof of Proposition 1, we must show that no equilibrium has a

set of active intermediaries that is larger than the set of those active in y∗. To this end, take y

satisfying R(y) = y and observe that this set of intermediaries (by definition of R) is mutually

stable. Thus it must be contained in the maximal mutually stable set.

The above gives a graph-theoretic description of the maximal equilibrium. We can also

give a description in terms of fixed-point theory. By the supermodular structure of the game,

the maximum lattice point can be found by starting from the maximum feasible actions y =
(1, . . . ,1), and repeatedly applying the best response function, R (Milgrom and Roberts, 1990).

Algorithm 1 below makes this precise.
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Figure 2: Macroprudential stress testing and crisis timeline.

Algorithm 1 Algorithm to compute the equilibrium (greatest fixed point of R).
y← 1
while y 6=R(y,w) do

y←R(y,w)
end while
return y

3.3 Macroprudential stress testing and ex-ante expected liquidity

As mentioned in the introduction, our analysis of liquidity takes the perspective of a macro-

prudential stress test (e.g. Constâncio (2017), Anderson et al. (2018)) in which a policy analyst

anticipates a crisis scenario and asks what will happen to liquidity. Figure 2 clarifies this se-

quencing of events and places the quantities we have developed so far into the context of the

macroprudential stress test.

Conceptually our analysis can be divided into two phases. A stress testing phase (T = 0)

and a crisis phase (T = 1, . . . ,3). In the stress testing phase, using only information available

at time T = 0, a policy analyst anticipates what occurs in the three events that constitute a

crisis. First, he takes a view on the structure of the networks GC and GR that emerge at T = 1

due to the aggregate shock that initiates the crisis. Second, he considers the idiosyncratic exit

shocks that materialize at T = 2 and lead to the withdrawal of intermediaries and the post-shock

networks GC (W ) and GR (W ). Finally, given GC (W ) and GR (W ) illiquidity spirals unfold and the

equilibrium liquidity L is realized.

From the perspective of the policy analyst, both the shock and network realizations are

unknown. Thus, for the policy analysist, the natural measure of liquidity is not L but its ex-
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(a) Star network (b) Core-periphery network.

Figure 3: Example networks

ante expectation given distributions over shocks and crisis networks w ∼ Fw and Gµ ∼ Hµ, i.e.

L̂ = E[L (w,GR ,GC )]. (5)

In what follows, our object of interest will be the expected equilibrium liquidity measure L̂

and its dependency on the distributions w ∼ Fw and Gµ ∼ Hµ, reflecting different beliefs of the

policy analyst over crises scenarios.

4 Two examples: Star and core-periphery networks

To build intuition for the mechanics of illiquidity spirals and to preview our main results, we

will illustrate our outcomes when the crisis networks—both for repo and collateral—come from

canonical classes of simple networks: star and core-periphery networks. Some of our central

findings have manifestations in some form even in these simple examples. First, we will see that

networks in which the two layers (repo and collateral) have a more overlapping link structure—

with the same intermediaries more likely to be at the center of both—are more resilient. Second,

making one market centralized improves the robustness of the system.

These results apply to star networks and networks with a core-periphery structure, which

is a stylized representation of patterns often seen in empirical studies of the exposures gener-

ated in over-the-counter markets (see Abad et al. (2016) and Craig and Von Peter (2014)).

In the following we will discuss the example of the star network in detail and, to remain

concise, will comment only briefly on our results for core-periphery networks. Our full treat-

ment of core-periphery networks can be found in Appendix B.
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4.1 Star network

Suppose both the repo network GR and the collateral network GC are star networks. We will

study the behavior of illiquidity spirals, in which those who exit following a shock cause other

intermediaries to withdraw from the market, and characterize the resulting equilibrium liquid-

ity measure. We will then explain how the calculations anticipate our main findings, which hold

for much richer network structures.

Figure 3 illustrates a star network. The network consists of two types of nodes: a single

hub node (blue rectangle) and a set of peripheral nodes (yellow circles). The hub node has bi-

directional links to all peripheral nodes but peripheral nodes are not connected to each other.

Thus, the OTC markets µ ∈ {R,C } are characterized by a partition of the set of intermediaries N

into a single hub intermediary BH ,µ and set of peripheral intermediaries BP,µ = N \ BH ,µ.

Let us now consider an exit shock profile w j ∈ RN in which intermediary j , chosen uni-

formly at random, receives an adverse shock, i.e.

w j
i =

0 if i = j ,

1 otherwise.

The probability that intermediary j receives an adverse shock is P (w j ) = 1/n. The following re-

sults for the post-shock liquidity measure will be computed by averaging over all shock profiles

of this form.

We also consider the realization of the network labels—that is, the identity of the hub in

each network—to be random and equally likely. Thus, we have a (simple) random multilayer

network, and we will condition on realizations of the identities of the hub and the periphery as

random variables.

To compute the post-shock liquidity measure it is sufficient to consider two cases. In the

first case the hub intermediaries in the repo and collateral markets are different, i.e. BH ,C 6=
BH ,R . In the second case the hub intermediaries are the same, i.e. BH ,C = BH ,R .

Proposition 2 (Coupled star networks – post-shock liquidity measure). Consider two star net-

works GC and GR . Let E [· | ·] denote the conditional expectation operator. The conditional ex-

pected post-shock liquidity measures are

E [L | BH ,C 6= BH ,R ] = (n −2)(n −1)

n2
,

E [L | BH ,C = BH ,R ] = (n −1)2

n2
.
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Given a probability q = P (BH ,C = BH ,R ) the expected post-shock liquidity measure for the coupled

star networks is

L̂ s−s := E [L ] = qE [L | BH ,C = BH ,R ]+ (1−q)E [L | BH ,C 6= BH ,R ]

= q
(n −2)(n −1)

n2
+ (1−q)

(n −1)2

n2
.

For the proof see Appendix C.2.

First, note that the conditional post-shock equilibrium liquidity is always less than n −1,

the liquidity in case of no additional withdrawals after the adverse shock. We call the phe-

nomenon that additional intermediaries withdraw following an exit shock an illiquidity spiral.

Second, note that the equilibrium liquidity is smaller when the repo and collateral markets do

not share the same hub node. This suggests that OTC markets that are less similar are less re-

silient to exit shocks. For the star network the intuition for this result is very simple. In coupled

star networks only the failure of a hub can trigger the withdrawal of additional intermediaries.

If the exit shock hits each intermediary with equal probability, then it is more likely that a hub

will be hit if the star networks do not share the same hub.

In later sections we will extend this observation to a richer class of networks, by showing

that stability is increasing in the structural overlap of the coupled networks: the likelihood that

a given link in one network also exists in the other. In fact, even for the star network, one could

think of the probability q as a measure of this overlap: as q increases, it becomes more likely

that links overlap.

We next turn to the question of how the stability of the system changes when one of the

OTC markets is replaced by a centralized exchange. In a centralized exchange all intermediaries

can trade with all other intermediaries. Therefore, we model a centralized exchange as a fully

connected (complete) network. Suppose that the collateral market is replaced by a complete

network. There can never be contagion “through” the complete network, because no node is

critical to connectivity within it. In other words, the mutually stable subsets of the pair of net-

works (GR ,GC ) are simply the stable subsets of GR . Therefore, the expected post-shock liquidity

L̂ s−c in the star-complete configuration is the same as in the star-star configuration conditional

on the two networks sharing the same hub intermediary, i.e. BH ,C = BH ,R .

Proposition 3 (Coupled star and complete networks – post-shock liquidity measure). Consider

a star network GC and a complete network GR . The post-shock liquidity measure is

L̂ s−c = E [L ] = (n −1)2

n2
.
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Furthermore, the post-shock liquidity in the star-complete configuration always exceeds the post-

shock liquidity in the star-star configuration if q > 0:

L̂ s−c > L̂ s−s .

The latter assertion follows immediately from the fact that E [L | BH ,C 6= BH ,R ] < E [L |
BH ,C = BH ,R ] = L̂ s−c and the fact that L̂ s−s is a convex combination of these two quantities.

Hence, the coupling of OTC repo and collateral markets leads to a reduction of the expected

equilibrium liquidity relative to the benchmark case of a centralized collateral market.

4.2 Core-periphery network

Core-periphery networks (see Figure 3 for a stylized example), are often used in models of over-

the-counter markets since they depict a segmented dealer-client structure in a very simple

way.28 Nodes in the stylized core-periphery network we study are partitioned into two sets:

a set of core nodes and a set of peripheral nodes. A core node is connected to all other core

nodes and a subset of peripheral nodes via bi-directional links. A peripheral node is connected

only to a single core node via a bi-directional link.

We will only outline our main results here, deferring a full treatment of illiquidity spirals

in core-periphery networks to Appendix B. As mentioned above, our results for the coupled

star network carry over to coupled core-periphery networks. First, as the two coupled networks

become similar (i.e. overlapping), the extent of illiquidity spirals is reduced. In the context of

core-periphery networks this means that networks in which nodes are in the core or periphery

of both networks are more stable than networks in which nodes are in the core of one but in the

periphery of the other network. Second, if one of the core periphery networks is replaced by a

centralized exchange, equilibrium liquidity is always improved.

Our analysis of core-periphery networks goes beyond our discussion of star networks in

that we also consider exit shocks in which more than just one node receives an adverse shock.

In particular, anticipating our analysis in Section 5, we study expected equilibrium liquidity

as a function of the fraction of nodes that received an adverse exit shock (i.e. the size of the

exit shock). We find that equilibrium liquidity first decreases quickly for small shock sizes but

then decreases more slowly as shock sizes become larger (see Figure 4). Importantly, in a core

periphery network, equilibrium liquidity never vanishes entirely if there exists a subset of nodes

that are in the core of both networks.
28See Wang (2016) for a recent model of trading in core periphery networks.
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Figure 4: Let W denote the set of all intermediaries hit with an exit shock. Equilibrium liquidity
as a function of the fraction of intermediaries 1−|W |/n that withdraw from the repo and collat-
eral markets following an exit shock in a core periphery network. The core periphery network
is determined by the fractions (ncc = 0,ncp = 2,npc = 2,npp = 50). Continuous line: analyti-
cal approximation for the case of repo and collateral OTC networks. Dashed line: analytical
approximation for the case of OTC repo market and centralized collateral market.

5 Random networks with given degree distributions

In our discussion of star and core-periphery networks above, we assumed that the structure of

the crisis networks is not only quite simple, and the shape of the network is known in advance

(up to relabelings). As we have argued in the introduction, one of the essential aspects of a crisis

is that the network of trading opportunities may be considerably changed relative to its normal

configuration by an aggregate shock, and the analyst conducting the macroprudential stress

test faces uncertainty over this change. In particular, some trading relationships may become

inactive. Therefore, in this section, we consider the (random) trading network in effect after

such a change. (Section 6 contains some more discussion of modeling considerations.)

Our model of the crisis network allows us to parameterize key features of the resulting

linkages while at the same time modeling the uncertainty in potential trading links from the

perspective of the policymaker. In particular, we consider in- and out-degrees of the nodes

(recall the definitions from Section 2.1) that follow an arbitrary joint distribution; links are ran-

dom conditional on nodes’ degrees. This sort of model makes the study of contagions especially

tractable, allowing us to examine fragility without parametric assumptions on the shape of the

19



degree distribution. After carrying out this exercise, we further build on it by using it to “add

noise” to the structured core-periphery networks studied in the previous section (see Appendix

G).

The examples studied in the prior section illustrate that the exit shock degrades liquidity

provision. A key question we will focus on is whether (from the ex ante perspective of the ana-

lyst) the random crisis network is robust or fragile: whether liquidity degrades gradually as the

a crisis gets worse, or whether it exhibits extreme sensitivity. The device we use to probe this is

to study how sensitive the network is to the size of an exit shock w that removes some nodes

uniformly at random. In particular, a configuration is said to be fragile if the total liquidity is

very sensitive to the size of the exit shock, and thus can collapse following a small number of

nodes being removed or disabled.

As we will see, under certain conditions, there is, indeed, extreme sensitivity. In other

words, the randomness in the crisis network we study here makes the fragility of coupled net-

works more acute. This demonstrates most clearly the financial contagion phenomena that

occur in multilayer networks, but which have no single-layer counterpart. It also highlights

to policymakers the sorts of crisis network configurations that raise the greatest concern. In

addition, the results in this section reinforce two insights first seen in the pure core-periphery

model. First, our results here imply that making one network centralized improves stability,

uniformly across crisis states. Second, if the two crisis networks are more similar, in the sense

of having more overlapping links, then stability is improved.

5.1 Random network models

For the rest of this section, the networks of interest are the ones induced by the aggregate shock,

i.e. the crisis networks. Let d+
µ = (d+

i ,µ)n
i=1 and d−

µ = (d−
i ,µ)n

i=1 be sequences of non-negative inte-

gers representing the out-degree and in-degree, respectively, of an intermediary i ∈ N in market

µ ∈ {R,C }, where as before n = |N |. In Appendix C.3, we impose some technical conditions on

these degree sequences that make random graphs generated from them well-behaved.29 Let

Gµ(n,d+
µ ,d−

µ) be the set of graphs on n nodes with degree sequences d+
µ and d−

µ . A random

network Gµ (for an n which is left implicit in the notation) is then a draw from Gµ(n,d+
µ ,d−

µ)

uniformly at random. Our simulations deal with these graphs directly. In our analytical results,

we study the limit of large networks, n → ∞. In this limit, we assume our technical assump-

tions impose that these degree sequences are consistent with joint distributions (p j k,µ) j ,k for

µ ∈ {R,C }, where p j k,µ is the fraction of intermediaries with in-degree j and out-degree k in

29These assumptions ensure, for example, that the first and second moment of the degree distribution remain
bounded in the limit n →∞ and that the sum of all out-degrees matches the sum of all in-degrees.

20



network µ. We fix these degree distributions throughout the section.

We now make the following assumption:

Assumption 5.1. For µ ∈ {R,C } and all k ≥ 0, we have p0k,µ = 0.

In other words, we assume that each node has at least one incoming link in both networks

with probability 1. This is the analog of Assumption 3.1 in the random networks model, and

thus all nodes are in a maximal stable set, and indeed in a mutually stable set (recall Lemma 3

in Appendix C.1). We also impose:

Assumption 5.2. The random networks GR and GC are independent realizations of GR and GC ,

respectively.

This implies that, for example, intermediary i ’s out-degree in GR is independent of its

out-degree in GC . In Section 5.5, we relax this assumption.

5.2 Liquidity when one network is complete: the case of a centralized col-

lateral market

It is convenient to start with a case where one market, say the collateral market, is centralized.

This reverses the order of presentation relative to the previous section, but the one-network

case is necessary here to introduce key ideas for the coupled-network case. Formally, let ḠC

denote the complete network, and assume for this subsection that GC = ḠC . This is equivalent

to the study of liquidity in one network, GR ; the completeness of the other network means that

illiquidity spirals occur only through GR .

Let the repo market correspond to a random network GR drawn from GR . Now we discuss

the exit shocks that we use to probe the fragility of the network.30 There is a pre- and a post-

shock state. The pre-shock state corresponds to w = 1, in which nobody receives bad shocks.

In the post-shock state, a fraction 1− x of intermediaries chosen uniformly at random receive

an adverse shock wi = 0. These intermediaries withdraw from both markets. We call 1− x the

size of the exit shock or the severity of the shock. Recall that L̂ ∗(x) is the expected liquidity of

the maximal equilibrium from the perspective of the policy analyst conducting the macropru-

dential stress test as defined in Section 3.3. How does L̂ ∗(x) vary as function of the shock size,

and in particular is it very sensitive to the exact shock size at some values of x?

30Recall that GR represents the configuration after an aggregate shock.
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5.2.1 The giant component

In the present case of a complete collateral network, equilibrium liquidity in any graph GR cor-

responds to the maximal stable set in GR . This follows from Proposition 1 along with the fact

that GC = GC , so that mutually stable sets are simply those sets in GR . The characterization of

the maximal stable set in GR , in turn, is reducible to the study of a certain kind of giant compo-

nent in the network GR . We now build up the definition of this object.

It is important to note that GR (W ), the network with the shocked intermediaries stripped

of their edges, is equal in distribution as a draw from GR with a different (suitably thinned) de-

gree distribution. Thus, all arguments here apply equally to the shocked and unshocked cases

and we drop the argument W for readability.

Definition 5.1 (Strongly and weakly connected subsets). In a network G = (V ,E), a subset V ′ ⊂
V is:

(a) strongly connected if, for any nonempty, proper subset V ′′ ⊆V ′, there is an edge from V ′′ to

V ′ \V ′′. (Note this implies an edge exists in the other direction as well.)

(b) weakly connected if for any nonempty, proper subset V ′′ ⊆ V ′, there is an edge between V ′′

and V ′ \V ′′ in one direction or the other.

A strong (resp., weak) connected component is defined to be a maximal strongly (resp.,

weakly) connected subset with more than one node.

Now, fix a single network µ and its associated degree distribution (p j k,µ) j ,k . Degree se-

quences d+
µ = (d+

i ,µ)n
i=1 and d−

µ = (d−
i ,µ)n

i=1 are drawn from that distribution, satisfying the tech-

nical assumptions of Appendix C.3. Let γn (resp. γ̃n) be the fraction of nodes in a maximum-

cardinality strongly (resp., weakly) connected component. Let ρn be the fraction of nodes

in nonsingleton weakly connected components other than the maximum-cardinality one.31

Standard results about random graphs under our assumptions are summarized as follows (see

Cooper and Frieze (2004) for details):

Lemma 1. Under our maintained technical assumptions,

(a) ρn → 0 always, so that there is at most one strongly or weakly component of nonnegligible

size;

(b) γn tends, with probability one, to a constant c ≥ 0 that depends only on (p j k,µ) j ,k ;

(c) γ̃n tends, with probability one, to the same constant c.
31If there are several components of maximum cardinality, select an arbitrary one.
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If c > 0, the largest strong (weak) component is said to be the giant strong (weak) compo-

nent (of size c) in the random graph. Otherwise we say there is no giant component.

5.2.2 Characterization of liquidity

We have seen above that equilibrium liquidity corresponds to the maximal stable set in GR . It

can now be deduced easily from the fact above that, asymptotically, c is the fraction of nodes in

the maximal stable set in the random graph with n nodes. Thus c is the equilibrium liquidity.

In the shocked regime, the degree distribution goverining GR is different, and thus corresponds

to a different c. In other words, in our setup of randomly disabling a fraction 1− x of interme-

diaries, the giant component size c depends on the shock size 1−x. We can now state the main

result for the case where one market is centralized:

Proposition 4. Let GR and GC be drawn as described at the start of this section. In particular let

GC = ḠC be a complete network. There exists a value rc such that the expected liquidity of the

maximal equilibrium vanishes smoothly at shock size 1− rc .

(1) for all x ∈ [0,rc ], there is no liquidity: L̂ ∗(x) = 0;

(2) for all x ∈ (rc ,1], liquidity is positive: L̂ ∗(x) > 0;

(3) The transition between the regimes is smooth: L̂ ∗(r−
c ) = L̂ ∗(rc ).

After the reductions we have gone through above, the proof of Proposition 4 is a straight-

forward application of known results on the giant component in directed networks (see New-

man (2002) and Cooper and Frieze (2004)). These immediately yield the smooth transition of

liquidity regimes in Proposition 4. Because an illiquidity sprial can never propagate through the

complete network, all other choices of GC must lead to a smaller critical shock size.32

The technique behind the analysis of c as a function of x is expressing the probability that

a random node is in the giant component via a fixed-point equation. For instance, it can be

seen that a node is in the giant weak component if and only if at least one neighbor is. The

resulting fixed-point equation characterizes the size of the giant component and its behavior as

we vary x. For the full proof of Proposition 4, see Appendix C.4.

5.3 Stress in coupled over-the-counter markets

We now turn to the case where both networks are over-the-counter, with nontrivial network

structures in each. Let the repo (resp., collateral) market correspond to a random network GR

32An exception to this is the special case when GC is a copy of GR , as we will discuss in Section 5.5. However,
given the independence of GR and GC this event has vanishing probability as n →∞.
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(resp., GC ) drawn from GR (resp., GC ). As before, these are the networks after the aggregate

shock, and we then consider the effect of an exit shock by comparing the pre- and post-exit

shock states. The pre-shock state corresponds to w = 1, in which nobody receives bad shocks.

In the post-shock state, a fraction 1− x of intermediaries chosen uniformly at random receive

an adverse shock wi = 0. These intermediaries withdraw from both markets. As before, we call

1−x the size of the exit shock. Let L̂ ∗(x) be the expected liquidity of the maximal equilibrium.

How does L̂ ∗(x) vary as function of the shock size?

We will use the notions introduced above to state a key assumption:

Assumption 5.3. Fix (p j k,µ) j ,k ; select, uniformly at random, of a fraction 1 − x of nodes and

remove all their edges.33 Let c(x) be the size of the giant strong component in the resulting

graph. Giant-component concavity holds if c is concave in x over the range where c(x) > 0.

We are now in a position to state our main result on liquidity in coupled random networks.

Proposition 5. Consider random networks GR and GC drawn as described above, with a degree

distribution satisfying giant-component concavity. Also, let ḠC denote the complete network.

(A) There is a value xc ∈ [0,1] such that the expected liquidity of the maximal equilibrium has a

discontinuity at shock size 1−xc . That is:

(1) for all x < xc , there is no liquidity: L̂ ∗(x) = 0 for large enough n;

(2) there is a constant L > 0, such that for all x ≥ xc , the liquidity is bounded below by L: i.e.,

L̂ ∗(x) ≥ L for large enough n.

(B) The critical shock size for the case of a centralized collateral market is always greater than

the critical shock size for the case of an OTC collateral market: 1−xc < 1− rc (GR , ḠC ).

Proposition 5 states that there are two liquidity regimes, and the one that obtains depends

on the size of the exit shock. If the shock is sufficiently small, i.e. less than 1− xc in size, both

repo and collateral markets are liquid. However, if the shock size increases beyond its critical

value by an arbitrarily small amount, liquidity in both markets vanishes. This is the market

freeze regime. The transition between the liquid and the frozen market regime is discontinuous

at the critical shock size: starting from a liquid market, the withdrawal of a very small measure of

additional intermediaries is amplified through the coupled structure of the repo and collateral

markets to the extent that all liquidity disappears entirely. Formally, this is reflected in the fact

that at xc , liquidity goes from a strictly positive value to 0.

33If technical assumptions in the appendix that apply to the original graph, they also apply to the graph obtained
from this process, called the “percolated” graph, so the lemma about giant components still holds.
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Figure 5: Illustrative example of a fragile connector: Intermediary 1 is a stylized example of a
fragile connector. It receives liquidity in the repo market from only a single intermediary and is
therefore susceptible to the withdrawal of this critical intermediary. At the same time interme-
diary 1 is the sole provider of liquidity to a number of intermediaries in the collateral market – it
acts as a connector in the market for collateral. Thus if intermediary 1 were to withdraw it would
lead to a loss of access to liquidity for a large number of intermediaries in the collateral market.
The existence of such fragile connectors is crucial in the mechanism underlying Proposition 5.

If shock size is increased, more intermediaries withdraw exogenously, and some interme-

diaries lose all their counterparties, being forced to withdraw as well. The question is when

and why this should result in a discontinuous loss of liquidity. Intuitively, the transition from

the liquid to the frozen regime is discontinuous because the complementary nature of the repo

and collateral markets produces “fragile connectors” (see Fig. 5 for an illustrative example). An

intermediary with few counterparties in the repo market is fragile since it can easily lose access

to liquidity. If the same intermediary is an important intermediary of liquidity in the collateral

market, it will be a fragile connector. The withdrawal of such an intermediary becomes more

likely as the shock size is increased and once it occurs, can have devastating consequences

for liquidity in both markets. Note that this result holds for any random network that satisfies

the assumptions made in Appendix C.3. It does not hold for arbitrary networks, however. One

counterexample comes from stylized core-periphery networks discussed in Section 4. For these

networks, a shock can never spread through the core and hence fragile connectors do not exist.

While we have shown here that discontinuities can occur in certain networks as they grow

large, our result also has important implications for networks of smaller size. In particular, if

these networks display a discontinuity in the limit, there exists a regime in which they are sus-

ceptible to full collapse after the removal of a single node. For details and a numerical analysis

of this point, see the Online Appendix.

We now discuss the proof of Proposition 5. First, observe liquidity is positive in the n →∞
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limit if and only if there is a mutually stable set in the two networks that comprises a positive

fraction of nodes. In our proof of this result in the appendix, we relate this to a notion from ran-

dom graph theory called the mutual giant component (Buldyrev et al., 2010). Just like the giant

component in one graph, this turns out to be unique if it exists. As a result of this key simplifi-

cation, the fraction of intermediaries in a mutual giant component again satisfies a fixed-point

condition: a node’s probability of being in it depends on its neighbors’ probability of being in it.

This is analogous to, but more complicated than, the fixed-point equation we discussed above

in the one-network case. The degree sequences d+
µ and d−

µ (for both values of µ) and the size

of the exit shock 1− x enter this equation, in determining how many neighbors can link one

to it, and the probability that one is not in it due to an exit shock.34 Thus, the first step is to

reduce the study of liquidity to the study of this fixed-point equation. Once it is written down,

it becomes possible to study how the solutions depend on the shock size, 1− x, and to under-

stand what features of the degree distribution lead to a discontinuous changes. Indeed, our

main technical contribution relative to the prior literature is to state general conditions on the

degree distribution such that the discontinuity occurs: the main ingredient is giant-component

concavity.

It is useful to compare the result to Proposition 4. This result shows that, when one of the

two markets is complete—e.g., if it corresponds to a centralized exchange—the transition from

the liquid to the frozen market regime is no longer abrupt but smooth. In addition, as noted in

Proposition 5(B), the transition always occurs at a larger shock size in the presence of a central-

ized exchange. Here, liquidity is less sensitive to the withdrawal of a single intermediary and

can only vary smoothly with the size of the exit shock: a sudden market freeze is not possible.

Comparing the two propositions emphasizes the stabilizing effect of a centralized exchange on

liquidity in the presence of exit shocks.

The main difference between the case when both networks are genuinely over-the-counter

case and the centralized collateral case is the absence of fragile connectors. Since in the com-

plete collateral network all intermediaries receive and provide liquidity to each other, there can

be no contagion through the complete network. While an intermediary may be fragile in the

repo market, its withdrawal cannot lead to a large number of further withdrawals in the collat-

eral market. The absence of fragile connectors therefore removes the amplification effect that

34Closely related to this fixed-point equation is the fact that we can define two interacting branching processes
occurring in the two networks, which in distribution, refect the extended network neighborhood around a typical
node. The degree distributions d+

µ and d−
µ and the size of the exit shock 1−x determine the branching probabilities.

If, starting from a randomly chosen intermediary, the branching process goes extinct, a node cannot form part of
the giant component. This reasoning allows us to specify as system of coupled equations whose greatest solution
yields L̂ ∗(x). Appendix C.4 develops this further. Amini et al. (2013) and Elliott et al. (2014), and Buldyrev et al.
(2010) use such techniques to characterize giant components, though none of these papers characterize outcomes
for arbitrary degree distributions in coupled networks.
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results from the complementarity of the repo and collateral markets. This leads to a smooth

transition and an increased critical shock size.

5.4 Liquidity for binomial and power law degree distributions

At a qualitative level, the results so far have shown that fragility is a robust property of the sys-

tems in question for a large set of degree distributions. For concreteness, we illustrate the results

in Propositions 5 and 4 by considering particular degree distributions: binomial (Erdős-Rényi)

and scale-free (power law) degree distribution.
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Figure 6: Equilibrium liquidity s∗ as a function of the fraction of intermediaries 1− x that with-
draw from the repo and collateral markets following an exit shock in an Erdős-Rényi network
with average degree λ= 5.

Erdős-Rényi: This is the simplest type of random network, corresponding to random match-

ing of counterparties. This type of graph is obtained by letting each directed link exist with a

given probability q . We hold the average in- and out-degree λ = nq fixed as n varies. Here,

due to the independence of in- and out-degrees the joint degree distribution factorizes into

p j k = p j pk with p j = pk and we have

pk =
(

n −1

k

)
qk (1−q)n−k−1.
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Figure 7: Equilibrium liquidity s∗ as a function of the fraction of intermediaries 1− x that with-
draw from the repo and collateral markets following an exit shock in a scale free network.

Scale free: A more realistic random graph structure models the wide heterogeneity in degrees.

As for the Erdős-Rényi networks we assume that the in- and out-degrees are independent, such

that the joint degree distribution factorizes into p j k = p j pk . We take p j = pk and pk = Cµk−α

forα ∈ (2,3] and k > 1. The constant that normalizes the degree distribution is C = 1/(ζ(α)−1),

where ζ(·) is the Riemann zeta function. The exponent α determines how dispersed the degree

distribution is; for α< 2, the variance of the degree distribution diverges.

Illustrating the results: We solve for the liquidity measure of the maximal equilibrium L̂ ∗(x)

numerically; the detailed calculations can be found in Appendix E. For each degree distribution,

we also compute L̂ ∗(x) when the collateral market is replaced by a complete network. In Fig.

6 and 7 we present the results for the binomial and scale free degree distributions, respectively.

The findings of Propositions 5 and 4 are apparent. First, in the case of two coupled OTC markets

(GR , GC ) there is a discontinuous transition from the liquid to the frozen market regime. Second,

when the collateral market is replaced by a complete network, yielding the pair (GR , ḠC ), the

transition is smooth and occurs at a greater shock size. Our results are robust to the choice of

parameters as long as the degree distributions satisfy the requirements laid out at the beginning

of this section.

It is clear that the discontinuities are stark, and under our parameters, the transition for

the power-law case is steeper and happens for a smaller shock size, even though average degree
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is actually lower.

5.5 Correlations between repo and collateral networks

Assumption 5.2 imposed that GR and GC are independent draws from their respective distribu-

tions. Under this assumption, an intermediary’s counterparties in the repo market are uncor-

related with its counterparties in the collateral market. In many cases however, the presence

of a trading relationship between two intermediaries in a given market is correlated with their

being linked in another market. Here we discuss how this affects our results.

Let GR and GC be random networks with the same degree distribution. Then, as n →∞
|E(GC )| = |E(GR )| = M . Define the overlap measure of network similarity as:

ω= #{i → j | i → j ∈ E(GC )∧ i → j ∈ E(GR )}

M
.

If GR and GC are independent, as n →∞ the fraction of overlapping edges vanishes and ω= 0.

If GR is a copy of GC , all edges overlap and ω = 1. Let GC and GR be two Erdős-Rényi random

networks with overlap ω. How are the results in Proposition 5 affected by different levels of

overlap?

Let us discuss some extreme cases to build intuition. The independent-networks case

that has been a focus of our results is essentially the ω= 0 case, because with n →∞ and finite

degrees, the probability of two independently drawn neighborhoods overlapping tends to 0.

Now, for the other extreme, considerω= 1, so that GR =GC . The maximal equilibrium whenω=
1 is the same as the maximal equilibrium when the collateral network is a complete network.

This is because, as in the case where GC is complete, the mutually stable subsets are exactly the

stable subsets of GR . Thus forω= 1, the results in Proposition 4 apply while forω= 0, the results

in Proposition 5 apply.

Varying the overlap parameter ω then interpolates between these two extremes. For val-

ues of overlap, ω, which are not too high, the sensitivity to shocks is still quite extreme, as in

the independent-networks case covered by Proposition 5. For higher values, the dependence

of liquidity on x is much smoother. Numerical calculations and a heuristic calculation, both

detailed in Appendix F, show that the transition occurs at an overlap of approximately ωc = 2/3

if GC and GR are Erdős-Rényi random networks.

Thus, as the two over-the-counter markets become more similar, i.e. as intermediaries

share more counterparties across markets, liquidity becomes more resilient to exit shocks. This

may appear counterintuitive at first, since it seemingly contradicts notion that a diversified set

of counterparties protects against random shocks to one’s counterparties. However, the com-
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plementary nature of repo and collateral markets that makes diversification here harmful rather

than helpful and leads instead to an amplification of exit shocks through the over-the-counter

markets.

We also present L̂ ∗(x) explicitly for two levels of overlap ω = {0.2,0.8}; see Fig. 13 in Ap-

pendix F. As expected for ω= 0.2, we observe a discontinuous transition from the liquid to the

frozen regime, while for ω= 0.8, we observe a continuous transition.35

6 Discussion

In this section, we discuss a number of our modeling assumptions, examining their robustness

as well as natural extensions and questions suggested by the results.

Binary liquidity-provision decisions

We interpret the model laid out in Section 2.1 as a liquidity-provision game between capital-

and cash-constrained intermediaries. Importantly, rather than modeling trades in the repo

and collateral markets in detail, we model in reduced-form a single decision about whether

to provide liquidity in each market. The graph formed by active intermediaries in the maximal

equilibrium can be interpreted as the set of potential trades. We abstract away from volume

and frequency of trade along a given link. Moreover, an intermediary either decides to provide

liquidity to all of its counterparties or none. In particular, as long as there is at least one trad-

ing partner active in the repo market, and one, possibly different, trading partner active in the

market for collateral, intermediary i is willing to be active in both markets.

In a more detailed model that endogenized decisions over which links to keep “open” or

“active,” there would be two new forces relative to our model. On the one hand, an intermediary

may sometimes choose to stay partly operational in one market if it has that option, while it

would have shut down if given a binary option between staying active and shutting down. In this

sense our best-response function is a conservative approximation of the best-response function

in a richer model: it resolves ambiguity in favor of shutting down. The second force goes in the

opposite direction: other intermediaries’ possibility of remaining partly operational may make

a given intermediary more likely to remain (partly) operational after a given shock. Thus, there

is no easy comparison between our model and one with richer, link-by-link decisions about the

willingness to trade. Because the strategic dynamics in this model are already intricate, we view

35We compute L̂ ∗(x) both via our approximate method and numerically via algorithm 1. Note that the heuristic
solution approximates the numerical solution quite well, though there are clear finite size effects for the numerical
solution (we used n = 2000).
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the current model as a useful simplification.

However, the basic structure of a supermodular game would carry over to a suitable ver-

sion of the more general link-by-link game. Let aµi j ∈ {0,1} denote the action of intermediary i

vis-a-vis intermediary j ∈ K +
i ,µ. Then one could impose the following constraint:

∑
j∈K +

i ,µ
aµi j ≤

ci ,µ+∑
j∈K −

i ,µ
aµj i . That is, the liquidity that intermediary i provides to its counterparties is con-

strained, up to a level ci ,µ, by the liquidity it receives from its counterparties. Now the best-

responses—how an intermediary withdraws liquidity—would be more complicated, reflecting,

for example, intermediary-level heterogeneity such as counterparty risk. The game can still be

defined to be supermodular, and so one can again define a maximal equilibrium. The propa-

gation of shocks, however, can be quite different due to the two forces we have sketched. On

the one hand, cascades can start from smaller shocks, because intermediaries can react in a less

extreme way. On the other hand, sensitivity to parameters will also be less extreme, because liq-

uidity will be withdrawn gradually and a shock that might have triggered full shutdown of a set

of intermediaries before will only trigger a milder contagion in a subset of those intermediaries.

Such extensions would be interesting to explore in future work.

Intermediaries facing tight constraints

We motivated the intermediaries’ best responses by tight capital and cash-in-advance con-

straints. Intermediaries earn more from their intermediation activity by increasing leverage

and reducing cash reserves to boost returns until regulatory constraints become tight. This will

be optimal if the intermediary does not anticipate the adverse shock. One way to relax the as-

sumption of tight constraints is to change the best response in Eq. (2) for some intermediaries,

making it optimal for them to operate even without active counterparties. These intermedi-

aries can be thought of having slack constraints and would provide liquidity in both markets

irrespective of their neighbors’ actions, increasing equilibrium liquidity provision. However,

this slackness parameter will be endogenous, and is likely to tighten in a crisis scenario.

Network structure

We studied the game of liquidity provision in three types of networks: stylized star and core-

periphery networks as well as random networks. Star and core-periphery networks allowed us

to develop an intuition for illiquidity spirals and exhibit simple versions of our main results. We

then moved on to crisis networks viewed as random networks with an arbitrary degree distri-

bution.

While some results are common across the two settings, other predictions differ markedly.
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In view of this, it is worth commenting further on the crisis network model, what it represents,

and how it relates to observables. Recall that a directed link represents an unobservable op-

portunity to trade—in contrast to a measured exposure network that reflects an aggregation of

trades across time. 36 One way of interpreting the random realization of links in our model is

as uncertainty over which trading opportunities are realized, even in normal times—e.g., which

counterparties are available to trade when they are needed (Duffie et al. (2007) emphasize the

“by appointment” nature of OTC trade in many markets, suggesting that frictions in finding

trading opportunities are considerable). Empirically, measured exposure networks can have

rich degree distributions, as we discuss in Appendix A; our model is designed to capture these

flexibly, along with the uncertainty in trading opportunities just discussed.

Our most important reason for taking the random network approach, however, is that we

are concerned with behavior during crises. In such times, the network of trading opportuni-

ties changes considerably from its normal configuration and is therefore inherently uncertain

from the perspective of a policy maker conducting a macroprudential stress test prior to the

crisis. This is the case even if trading opportunities in normal times are not uncertain from the

analyst’s perspective.

As a robustness check, we use numerical calculations to study a class of network struc-

tures that interpolate between core-periphery and random networks with a given degree dis-

tribution (see the Online Appendix). These can be viewed as core-periphery networks with

noise—i.e., ones whose structure is perturbed by a random shock. Our results show that even

a slight perturbation of this form (i.e., slight planner uncertainty) gives rise to the systemic

fragility we have identified. Indeed, the transition to the fragile regime (with market freezes)

is caused by relatively small reductions in the links among the most connected nodes. This fur-

ther underlines the stark impact of aggregate shocks even when they are small. It also motivates

empirical research into the structure of trading networks both in normal and crisis times.

Also in the Online Appendix we show that the abrupt evaporation of liquidity observed

for random networks is not limited to large networks. Even in small networks, liquidity may

evaporate abruptly, if particularly critical intermediaries fail. Such critical intermediaries tend

to be intermediaries that are sole liquidity providers to intermediaries that themselves provide

liquidity to many other intermediaries.

36For some challenges involved in inferring the network structure from observational data, see Golub and Jack-
son (2010) and Chierichetti, Liben-Nowell, and Kleinberg (2011).

32



7 Relation to the Literature

Market freezes in theory. In the liquidity-provision game between intermediaries outlined in

the previous section, an intermediarie’s choice to be active in either market determines whether

it provides market and funding liquidity to its trading partners. While we make simple reduced-

form assumptions on liquidity provision in order to focus attention on network considerations,

our model relates to an active literature on liquidity hoarding as a source for financial market

freezes. This literature considers the precise mechanisms of liquidity provision in more detail.

Banks in Gale and Yorulmazer (2013) choose to hoard liquidity, even if there is a willing bor-

rower in the market, because of a precautionary or a speculative motive. Heider, Hoerova, and

Holthausen (2015) show that interbank markets can break down and banks start hoarding liq-

uidity if banks have private information about their assets and adverse selection is prevalent.

Bond and Leitner (2015) show that a freeze in the market for an asset can arise when traders

hold inventories of similar assets and their leverage constraints are tight. Empirical evidence

corroborates these theoretical models. Ashcraft, McAndrews, and Skeie (2011) and Acharya

and Merrouche (2013), for example, show that banks in the US and UK indeed were hoarding

liquidity during the global financial crisis. Liquidity in an OTC market is, unlike in centralized

markets, local: due to frictions, a situation can exist in such markets where some market partic-

ipants have liquidity supply while others have liquidity demand, but no trade ensues because

they don’t have a link.37 The ensuing over-the-counter network structure is then the result of

the individual decisions by market participants whether or not to be active in the market.

Empirical evidence of financial market freezes. A number of authors empirically study the

fragility of repo markets during the 2007/2008 financial crisis. Gorton and Metrick (2012) argue

that a central aspect of the crisis was a system-wide run on short-term collateralized debt, and

in particular on certain non-government bond repo markets. Krishnamurthy, Nagel, and Orlov

(2014) show that, while the trip-party repo market has been more stable during the crisis than

bilateral repo, markets for asset-backed commercial paper (ABCP) experienced a significant

contraction.38 This finding is mirrored by Copeland, Martin, and Walker (2014), who document

substantial heterogeneity in access even to tri-party repo funding in late 2008.

Illiquidity spirals. In the literature on secured lending, the theoretical papers most closely re-

lated to ours are Brunnermeier and Pedersen (2009) and Acharya, Gale, and Yorulmazer (2011).

37One reason why market participants with liquidity supply do not provide liquidity to those with liquidity de-
mand is search frictions in over-the-counter markets.

38Covitz, Liang, and Suarez (2012) study the fragility of asset-backed commercial paper markets. Our model
naturally extends to ABCP markets.
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Our model of illiquidity spirals in repo and collateral markets explicitly takes into account the

OTC network structure of these markets. This sets us apart from Brunnermeier and Pedersen

(2009) who study the feedback between market and funding liquidity in centralized markets.

Our model shows that the network structure alone, abstracting from haircut and pricing feed-

back, can lead to a significant amplification of exogenous shocks in collateral and repo mar-

kets. Acharya, Gale, and Yorulmazer (2011) show how a bank’s ability to obtain secured funding

depends on the risk and liquidation value of the collateral and how this dependency leads to a

feedback between collateral and debt markets mediated by the debt capacity (essentially, quan-

tity) offered. In contrast to these works, we show that, given the complementarity of collateral

and secured debt markets the over-the-counter nature of these markets is sufficient to generate

a feedback between market and funding liquidity that amplifies exogenous shocks.

Our paper is also related to Martin, Skeie, and von Thadden (2014) who model repo runs

arising from pure coordination failure in a dynamic model. They show that repo markets in

which haircuts cannot be adjusted, such as a centralized or tri-party repo market, can be more

fragile than bilateral repo markets in which haircuts can be adjusted. We contribute to this

debate by showing that if at least one OTC market is replaced by a centralized exchange, the

resilience of liquidity improves. This suggests at least two opposing effects that need to be taken

into account when judging the merits of centralized exchanges: the flexibility of haircuts and

adverse network effects.

Financial over-the-counter networks. Most empirical studies of OTC markets focus on finan-

cial exposure networks. Approximate core-periphery structures are often observed (see Di Mag-

gio, Kermani, and Song (2017) on the inter-dealer corporate bond market and Li and Schürhoff

(2018) on the market for municipal bonds). Much contemporary interbank lending is secured,

making the interbank market another relevant reference case. Craig and Von Peter (2014) show,

for example, that the German interbank market generally has a core-periphery structure with

noise. In the international context, Gabrieli and Georg (2014) show that the Euroarea interbank

market follows a core-periphery structure less closely, with large international banks connect-

ing the different national core-periphery networks. Because of the sensitivity of trading out-

comes even to small aggregae shocks, our result suggest the examination of networks of trad-

ing opportunities (as distinct from networks of exposures), especially during crises or times of

volatility.

Contagion in financial networks. A large literature studies contagion in financial networks

that ensues when the default of one financial institution causes the subsequent default of other

financial institutions (see, for example, Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Elliott,
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Golub, and Jackson (2014), Zawadowski (2013), and Farboodi (2017), as well as Glassermann

and Young (2016b) for an extensive overview). Burkholz, Leduc, Garas, and Schweitzer (2016)

study cascading failures in a multiplex network. Firms in their model have a core and a sub-

sidiary business unit who are each exposed to possible contagion within their respective net-

work of business relationships. A default of the core business unit will lead to a default of the

subsidiary, but not necessarily vice versa. Burkholz, Leduc, Garas, and Schweitzer (2016) ob-

serve a similar amplification mechanism between network layers to ours and find that the ex-

tent of the amplification is sensitive to the strength of the coupling between two two layers.

While our model could be interpreted as a contagion model, contagion occurs via the interme-

diaries’ decision variables to withdraw from markets rather than via actual defaults. This is a

key difference to the existing literature on contagion in financial networks and in line with the

empirical evidence from the 2008 financial crisis: even the default of a large intermediary, such

as Lehman Brothers, did not trigger many subsequent defaults,39 while it is likely to have led to

a freeze in markets for short-term collateralized debt.

Multilayer network theory. There is a growing literature in applied mathematics and physics

on coupled, or multilayer, networks. A seminal paper is Buldyrev, Parshani, Pau, Stanley, and

Havlin (2010), and since then there have been a variety of applications, including, e.g., to the

question of whether firms should spin off subsidiary units—see, e.g., Burkholz, Leduc, Garas,

and Schweitzer (2016). In terms of the theory of coupled networks, our contribution is to formu-

late general conditions on the degree distributions of each of the trading networks that yield the

stark conclusions (e.g., about discontinuous collapses in coupled markets). These conditions

are satisfied by standard network structures, but the general conditions were not previously

known. The relation to of coupled networks to certain games of strategic complements that we

identify may also be of independent interest.

Games on networks. Our paper is also related to the networks literature in economic theory,

especially contagion and games on networks. Papers such as Blume (1993) and Ellison (1993)

first suggested that local interaction, modeled via a network structure, can be used to study the

likelihood that various equilibria would be played and how an economy may reach an equilib-

rium. Whereas these early papers focused on noisy heuristic adjustment procedures, Morris

(1997, 2000) studied games with standard (no-noise) solution concepts and related networks to

games of incomplete information. The latter paper’s results, applied to a network game, show

when a network can support heterogeneous actions, and what conditions result in equilibria

39An exception is the Reserve Primary Fund, who, due to a large exposure to Lehman Brothers, filed for
bankruptcy the day after Lehman Brothers filed for bankruptcy.
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such as (in our context) “everyone withdraws.” Jackson and Yariv (2007) and Galeotti, Goyal,

Jackson, Vega-redondo, and Yariv (2009) developed this sort of model to accommodate ran-

dom networks described by a degree distribution. Our approach has much in common with

this theoretical literature on games in networks. We also use the structure of supermodular

games (as in Milgrom and Roberts (1990)) to identify benchmark equilibria, and look at their

structure for large random networks. The main innovation relative to these papers on games in

networks is that we study multilayer networks, and analyze how the multilayer aspect of their

structure affects the best-response structure of the game, especially when the underlying net-

works are random. Equilibria depend more sharply on the parameters on the network than has

been reported previously, due to the discontinuities discussed above. Thus, our paper relates to

the network games literature broadly, and offers new game-theoretic implications arising from

multilayer network structures.

8 Conclusion

We develop a model of intermediary liquidity provision in over-the-counter repo and collateral

markets and study the maximal equilibria of the resulting complete-information game in two

coupled networks from the perspective of a policy analyst conducting a macroprudential stress

test. The coupling occurs through the complementary nature of repo and collateral trading and

is reflected in the best responses. In particular, as long as there is at least one trading partner

active in the repo market, and one, possibly different, trading partner active in the market for

collateral, an intermediary is willing to be active in both markets.

The presence of fragile connectors—intermediaries that are on the brink of isolation in

one market and critical intermediaries in the other—makes equilibrium liquidity fragile. In

particular, the withdrawal of such a fragile connector can lead to a sudden market freeze. Even

in the absence of fragile connectors, the complementary nature of repo and collateral markets

can amplify exit shocks and lead to illiquidity spirals. Replacing at least one OTC market by

a centralized exchange reduces the extent of illiquidity spirals and improves the resilience of

liquidity. Increasing overlap—making the two networks more similar—also increases resilience.

Moving forward, a natural next step would be to extend the model to account for incom-

plete information. In this setting, the realization of the shock profile or the parameters enter-

ing intermediaries’ best response functions may only be partially known to the agents. This

would, for example, allow us to study how liquidity is affected by changes in intermediaries’

beliefs about the distribution of the exogenous shock. In turn, this would permit a study of the

realistic phenomenon that liquidity may evaporate when bad news is published, if that news
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coordinates beliefs in a suitable way (Angeletos and Werning, 2006; Golub and Morris, 2017a,b;

Morris and Yildiz, 2017).

Another natural set of theoretical questions concerns the resilience of the network and

how the potential abruptness of liquidity evaporation changes individual nodes’ incentives to

invest in protective measures—e.g., due diligence. Public goods problems in networks have

received a great deal of study (Bramoullé and Kranton, 2007; Allouch, 2015; Elliott and Golub,

2018), but the distinctive externalities associated with multilayer phenomena have yet to be

explored.40

Our model raises a number of issues for policymakers. First, we illustrate the potential

fragility of liquidity in over-the-counter markets and show how it may be reduced by moving

towards centralized exchanges. Second, our results highlight the importance of better mea-

surement and empirical and study of the structure of these markets, in particular with respect

to fragile connectors.

References
ABAD, J., I. ALDASORO, C. AYMANNS, M. D’ERRICO, L. F. ROUSOVA, P. HOFFMANN, S. LANGFIELD, AND T. ROUKNY

(2016): “Shedding light on dark markets: first insights from the new EU-wide OTC derivatives dataset,” European
Systemic Risk Board Occasional Paper Series.

ACEMOGLU, D., A. OZDAGLAR, AND A. TAHBAZ-SALEHI (2015): “Systemic Risk and Stability in Financial Networks,”
American Economic Review, 105, 564–608.

ACHARYA, V., G. AFONSO, AND A. KOVNER (2017): “How do global banks scramble for liquidity? Evidence from the
asset-backed commercial paper freeze of 2007,” Journal of Financial Intermediation, 30, 1–34.

ACHARYA, V. AND O. MERROUCHE (2013): “Precautionary hoarding of liquidity and interbank markets: Evidence
from the subprime crisis,” Review of Finance, 17, 107–160.

ACHARYA, V., P. SCHNABL, AND G. SUAREZ (2013): “Securitization Without Risk Transfer,” Journal of Financial Eco-
nomics, 107, 515–536.

ACHARYA, V. V., D. GALE, AND T. YORULMAZER (2011): “Rollover risk and market freezes,” The Journal of Finance,
66, 1177–1209.

ALLOUCH, N. (2015): “On the private provision of public goods on networks,” Journal of Economic Theory, 157,
527–552.

AMINI, H., R. CONT, AND A. MINCA (2013): “Resilience to contagion in financial networks,” Mathematical finance.

ANDERSON, R., C. BABA, J. DANIELSSON, U. S. DAS, H. KANG, AND M. SEGOVIANO (2018): “Macroprudential
stress tests and policies: Searching for Robust and Implementable Frameworks,” Report, International Mon-
etary Fund.

40There is also the additional subtlety of how the discontinuities we identify interact with discontinuities in net-
work density that come from strategic effects—see, e.g., Golub and Livne (2010).

37



ANGELETOS, G.-M. AND I. WERNING (2006): “Crises and Prices: Information Aggregation, Multiplicity, and Volatil-
ity,” American Economic Review, 96, 1720–1736.

AQUILINA, M. AND F. SUNTHEIM (2017): “Liquidity in the UK corporate bond market: evidence from trade data,”
The Journal of Trading, 12, 67–80.

ASHCRAFT, A., J. MCANDREWS, AND D. SKEIE (2011): “Precautionary Reserves in the Interbank Market,” Journal of
Money, Credit, and Banking, 43, 311–348.

ATHREYA, K. B. AND P. JAGERS (2012): Classical and modern branching processes, vol. 84, Springer Science & Busi-
ness Media.

AYMANNS, C., J. D. FARMER, A. M. KLEINNIJENHUIS, AND T. WETZER (2018): “Models of financial stability and their
application in stress tests,” Handbook of Computational Economics, 4, 329–391.

BAKLANOVA, V., A. M. COPELAND, AND R. MCCAUGHRIN (2015): “Reference guide to US repo and securities lending
markets,” FRB of New York Working Paper No. FEDNSR740.

BARABÁSI, A.-L. AND R. ALBERT (1999): “Emergence of scaling in random networks,” science, 286, 509–512.

BLUME, L. E. (1993): “The Statistical Mechanics of Strategic Interaction,” Games and Economic Behavior, 5, 387–
424.

BOND, P. AND Y. LEITNER (2015): “Market run-ups, market freezes, inventories, and leverage,” Journal of Financial
Economics, 115, 155–167.

BRAMOULLÉ, Y. AND R. KRANTON (2007): “Public goods in networks,” Journal of Economic Theory, 135, 478–494.

BRITTON, T., S. JANSON, A. MARTIN-LÖF, ET AL. (2007): “Graphs with specified degree distributions, simple epi-
demics, and local vaccination strategies,” Advances in Applied Probability, 39, 922–948.

BRUNNERMEIER, M. K. AND L. H. PEDERSEN (2009): “Market liquidity and funding liquidity,” Review of Financial
studies, 22, 2201–2238.

BULDYREV, S. V., R. PARSHANI, G. PAU, H. E. STANLEY, AND S. HAVLIN (2010): “Catastrophic cascade of failures in
interdependent networks,” Nature, 464, 1025–1028.

BURKHOLZ, R., M. V. LEDUC, A. GARAS, AND F. SCHWEITZER (2016): “Systemic Risk in multiplex networks with
asymmetric coupling and threshold feedback,” Physica D: Nonlinear Phenomena, 323–324, 64–72.

CABRALES, A., P. GOTTARDI, AND F. VEGA-REDONDO (2017): “Risk sharing and contagion in networks,” The Review
of Financial Studies, 30, 3086–3127.

CHIERICHETTI, F., D. LIBEN-NOWELL, AND J. M. KLEINBERG (2011): “Reconstructing patterns of information dif-
fusion from incomplete observations,” in Advances in Neural Information Processing Systems, 792–800.

CHOI, S., A. GALEOTTI, AND S. GOYAL (2017): “Trading in networks: theory and experiments,” Journal of the Euro-
pean Economic Association, jvw016.

CONDORELLI, D., A. GALEOTTI, AND L. RENOU (2016): “Bilateral Trading in Networks,” The Review of Economic
Studies, Forthcoming.

CONSTÂNCIO, V. (2017): “Macroprudential stress-tests and tools for the non-bank sector,” Prepared remarks at the
esrb annual conference, frankfurt am main, 22 september 2017, European Central Bank.

COOPER, C. AND A. FRIEZE (2004): “The size of the largest strongly connected component of a random digraph
with a given degree sequence,” Combinatorics, Probability and Computing, 13, 319–337.

38



COPELAND, A., A. MARTIN, AND M. WALKER (2014): “Repo runs: Evidence from the tri-party repo market,” The
Journal of Finance, 69, 2343âĂŞ–2380.
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A The structure of financial networks during crises

For a policy analyst conducting a macroprudential stress test of the type outlined in Section 3.3,

what is relevant is the structure of the networks of trading opportunities during crisis times. Our

model of this network is a random network with a given degree distribution that can be flexibly

specified by the modeler. This section documents some empirical observations that explain

why this model was chosen.41

The network of trading opportunities is always latent and therefore difficult to measure

empirically. However, a natural starting point is the network of observed exposures during the

normal times. In Figure 8, we plot the cumulative degree distribution of overnight interbank

exposures aggregated over a reserve maintenance period (RMP)42 among euro area banks. The

first observation is that this network has a different distribution than one would see in a core-

periphery network of the same size.43 Rather than having a sharp distinction in degree between

41The final subsection of Section 6 discusses some more general considerations on the identification of this
network.

42To produce this plot, we used the data from Gabrieli and Georg (2014), who study the network of euro area
overnight interbank loans obtained from the Target2 payment system. A reserve maintenance period corresponds
roughly to a month and is the natural unit of aggregation as banks are required to hold minimum average reserves
over this period commensurate with their deposits. The overnight interbank market is the main mechanism how
these reserves are redistributed among banks.

43Consider a core-periphery network with nC core nodes and nP peripheral nodes, each linked to one core node;
we would expect a bi-modal degree distribution with one peak around degree one (corresponding to the periph-
eral nodes) and another around degree nC −1+nP /nC (corresponding to the core nodes). With peripheral nodes
connecting to more core nodes, the distribution would have larger support, but there would still be a break in the
degree distribution corresponding to the structural difference between the core and periphery.
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Figure 8: Cumulative degree distribution of overnight interbank loans in Europe from the Tar-
get2 payment system in the reserve maintenance period starting in September 2008 compared
with a stylized core-periphery network of the same size.

core and periphery, the distribution in Figure 8 appears heavy-tailed.44 Figure 8 suggests that

stylized core-periphery networks cannot capture the rich structure of observed exposures: a

model with a more flexible degree distribution is needed, even for network structure during

normal times, which is consistent with our modeling approach.

Our second observation, illustrated by Figure 9, is that this degree distribution thinned

out substantially during the height of the global financial crisis in September 2008. We plot the

distribution of changes in the number of neighbors a bank has from a given RMP relative to the

RMP immediately prior. We label RMPs by the month they start in (throughout our sample, this

label identifies an RMP uniquely). A negative mean indicates that connections are cut and the

network is thinned out, while a positive mean implies more connections are being created. The

mean of the change of a bank’s number of neighbors in July 2008 is 1.96, while in September

2008 it is −1.43 and in July it is −0.25.45 That the network continued thinning out is in line with

the continuing crisis in the euro area that turned into the euro area sovereign debt crisis in early

44Note that, for confidentiality reasons, the CDF depicted must be censored at degree 50, but the figure is quali-
tatively unchanged without the censoring.

45Since the Target2 payment system became operational in the last country of the euro area only in May 2008,
we do unfortunately not have data for any date before then.
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Figure 9: Box plot of the change of the number of a bank’s neighbors in the euro area overnight
interbank network aggregated on reserve maintenance period basis. Changes are computed
from one reserve maintenance period to the next. A negative change implies the a given bank
has lost neighbors.

2010.

Our final observation is that even insofar as exposure networks pre-crisis are well-approximated

by simple benchmarks such as core-periphery structures (as discussed, e.g., in (Craig and Von Pe-

ter, 2014; Li and Schürhoff, 2018)), the shocks to network structure during a crisis can change

the situation considerably. Around the insolvency of the US investment bank Lehman Brothers

in September 2008, Gabrieli and Georg (2014) show that about 52% of the links in the euro area

overnight interbank market violated the stylized core-periphery structure and a large fraction

of links changed. The random network models we use in Section 5 are designed to be flexi-

ble enough to capture important features of network structure that are consequences of this

“thinning out.”

B Detailed treatment of core-periphery networks

In this section we provide a full treatment of our core-periphery results outlined in Section 4.2.

We will show that, as for star networks, an adverse shock leads to the withdrawal of additional

intermediaries and that the extent of this amplification depends on how many intermediaries

are peripheral in one network and central in the other.

Nodes in the stylized core-periphery network we will study are partitioned into two sets: a

set of core nodes and a set of peripheral nodes. A core node is connected to all other core nodes

and a subset of peripheral nodes via bi-directional links. A peripheral node is connected only
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to a single core node via a bi-directional link (see Fig. 3). Let Ω : N → {cc,cp, pc, pp} denote

the map that assigns each intermediary to either the core or the periphery of networks GC and

GR . For example, an intermediary that is in the core of GC and GR would be labelled cc while an

intermediary that is in the core of GR and the periphery of GC would be labelled cp.

We study a random way of generating core-periphery networks: we fix the total number

of intermediaries with each label nt p = #{i |Ω(i ) = t p}, and generate core-periphery networks

uniformly at random consistent with this. Thus, the parameter vector n = (ncc ,ncp ,npc ,npp )

fully determines the distribution of coupled core-periphery networks we will study in this sec-

tion.

We parameterize a shock profile w by the vector m = (mcc ,mcp ,mpc ,mpp ) whose ele-

ments are the number of intermediaries of a particular type with wi = 1. In other words, the

shock profile gives the number of shocked intermediaries of each type. The shocks are drawn

uniformly at random subject to these shock sizes. We denote the complement vector, i.e. the

number of intermediaries with wi = 0, by m= (mcc ,mcp ,mpc ,mpp ). The shock size is given by

mW =∑
t p mt p .

For an intermediary i in the core of both networks, let P R
i be the set of unshocked pe-

ripheral neighbors of i in GR , i.e.

P R
i = { j ∈GR | i → j ∧w j = 1}.

Let the random variable kR (respectively, kC ) denote the size of the set P R
i (respectively, P C

i ).

Given the distribution of network and shocks, the expected values of kR and kC will be,

kR (m) = E [kR | mpc ,mpp ] = mpc +mpp

ncc +ncp
,

kC (m) = E [kC | mcp ,mpp ] = mcp +mpp

ncc +npc
.

We can derive an expression for the expected post-shock liquidity measure by averaging over all

parameterizations of the shock profile. For this we first compute an expression for the expected

number of additional intermediaries that will withdraw conditional on the withdrawal of an

intermediary of a particular type, e.g. cc.

Lemma 2 (Type conditional spill-over). Let z(m) ∈ [0,1] denote the expected fraction of periph-

eral intermediaries in GC that are not connected to a shocked intermediary (i such that wi = 0)

in the core of GR . Then the expected number of additional intermediaries that will withdraw

conditional on the withdrawal of an intermediary of a particular type is given by

• cc (core-core): acc = kR +kC z,
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Figure 10: Shared peripheral intermediaries in a core periphery network

• cp (core-periphery): acp = kR ,

• pc (periphery-core): apc = kC z,

• pp (periphery-periphery): app = 0.

To develop intuition for this result, let us consider the effects of the withdrawal of an in-

termediary given its type, i.e. cc, cp, pc or pp. If a core intermediary withdraws in a given net-

work, only its peripheral neighbors will withdraw. If a peripheral intermediary withdraws, no

additional intermediary will withdraw. If a cc intermediary withdraws, its peripheral neighbors

in both networks will withdraw. If a cp (pc) intermediary withdraws, only peripheral neighbors

in GR (GC ) will withdraw. Finally, if a pp intermediary withdraws, no additional intermediary

withdraws.

The number of additional intermediaries that withdraw following the withdrawal of a par-

ticular intermediary would be easy to compute if core intermediaries in GC and GR did not share

peripheral intermediaries: for a core intermediary, this would simply be the number of periph-

eral intermediaries that rely on it in either network. However, if
∑

i wi becomes large relative

to the network size n, some withdrawing core intermediaries are quite likely to share periphery

intermediaries. Fig. 10 illustrates this situation. Here the withdrawing core intermediaries la-

beled 1 and 2 share a peripheral neighbor labeled 5. Treating the amplification effect of 1 and

2 as independent would result in the double-counting of intermediary 5. We can correct for

this double-counting by appropriately scaling the expected number of peripheral neighbors of

a core node in one of the two networks. In Lemma 2, the correction consists of scaling kC by the
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fraction (z) of peripheral intermediaries in GC that are not connected to a core intermediary in

GR with wi = 0. The following result gives the consequence for aggregate activity of the effect

quantified in Lemma 2:

Proposition 6 (Core-periphery – post shock liquidity measure). The expected number of with-

drawing intermediaries given m and n is given by

A(m) = (1+acc )mcc + (1+acp )mcp + (1+apc )mpc + (1+app )mpp .

The expected number of intermediaries providing liquidity conditional on shock size mW is given

by

L̂ cp−cp (mW ) = E [L | mW ] = 1− 1

n

∑
m

A(m)P (m,n)

where P (·, ·) is the multivariate hypergeometric distribution with parameters n and m.

It is possible to derive an exact expression for the quantity z(m) defined in Lemma 2,

which figures in acc , acp , apc and app . Cleaner expressions are obtained using the approxima-

tion z(m) ≈ 1− (mcc +mcp )/(ncc +ncp ) for simplicity.46 This approximation performs well in

numerical experiments and is used in our numerical results, discussed below for core-periphery

networks.

The quantity z can be thought of as a measure of overlap between the two core periphery

networks. As z goes to zero, the core nodes in the repo and collateral networks share an increas-

ing fraction of peripheral neighbors and thus become increasingly overlapping. Lemma 2 and

Proposition 6 show that as z decreases, i.e. overlap increases, the expected post shock liquidity

measure also increases. The intuition for this result follows directly from Lemma 2: only inter-

mediaries that are in the core of at least one network can cause the withdrawal of additional

intermediaries. Furthermore, the extent to which additional intermediaries withdraw depends

on how many peripheral neighbors failing intermediaries in the cores of the networks share.

If they share many peripheral neighbors, the illiquidity spiral due to the network coupling is

dampened.

Finally, suppose that in a coupled core-periphery network parameterized byn= (ncc ,ncp ,npc ,npp ),

the collateral market is replaced by a complete network, i.e. a centralized exchange. This special

case is nested in our parameterization of coupled core-periphery networks—it corresponds to

46Note that mcc +mcp is simply the number of core intermediaries in GR that survive and ncc +ncp is the total
number of core intermediaries in GR . Hence, we approximate z by the fraction of core intermediaries in GR that
fail. Computing the exact expression involves keeping track of all network configurations and their probabilities
and is complicated by the dependencies introduced by sampling without replacement. However, computing this
exact expression for z does not add any substantial insights.
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the vector n′ = (n′
cc ,0,n′

pc ,0). Since the number of core and periphery nodes in the repo market

should not be changed in going fromn ton′, we require that n′
cc = ncc+ncp and n′

pc = npc+npp .

Proposition 7 (Core-periphery and centralized market – post shock liquidity measure). Let GR

be a core periphery network and GC be a complete network. Givenn′ andm, the expected number

of withdrawing intermediaries is

A(m) = (1+kR )mcc +mpc .

The expected number of intermediaries providing liquidity conditional on shock size mW is

L̂ cp−c (mW ) = E [L | mW ] = 1− 1

n

∑
m

A(m)P (m,n′)

where P is defined as above. For a fixed shock size mW and ncp +npp > 0, the post-shock liquidity

in case of a centralized collateral market is always greater than post-shock liquidity in the pure

core-periphery case

L̂ cp−c (mW ) > L̂ cp−cp (mW ).

In other words, when a collateral market with some peripheral nodes is replaced by a

centralized exchange, post shock liquidity is always improved. The intuition for this result is

very similar to the intution for Proposition 3 where we show a similar result for star networks.

If one the two networks is replaced by a complete network (i.e. a centralized exchange), then

no contagion can pass through this network. This is equivalent to setting z(m) = 0 in Lemma 2.

Thus the above result will hold, irrespective of the exact functional form of z(m), provided that

z(m) > 0 for some network configurations when both markets are core-periphery. This is the

case for the scenarios we are considering here.47

To illustrate the size of this effect and the comparative statics of the liquidity measure for

different shock sizes, we numerically evaluate the post shock liquidity measure in Fig. 4 for an

example with (ncc = 0,ncp = 2,npc = 2,npp = 50) using the approximation z(m) ≈ 1− (mcc +
mcp )/(ncc +ncp ).48

47The case when there are just two nodes is an exception. However, in this case the notion of a core and a
periphery are not well defined. Therefore, we exclude this corner case from our analysis.

48To speed up the calculation, rather than summing over the entire probability space, E [L | mW ] is approxi-
mated by its Monte Carlo average.
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C Proofs

C.1 General facts

Lemma 3. Suppose Assumption 3.1 is satisfied. Then in a maximal equilibrium, y∗
i = 1 for all i ;

equivalently, the maximal stable set consists of all nodes.

Proof. Fix a G and define Ĝ to be the same graph with all edges reversed. Note in this graph

each node has at least one outgoing edge. If we follow an arbitrary path, continuing by some

out-edge at each step, then we will eventually reach a cycle of more than one node (since there

are no self-edges by assumption). From this it follows that any directed path ends in a strong

component. Thus (remembering the fact that Ĝ is G with edges reversed) it follows that any

node in G has a directed path leading to it from a strong component in G . Now, note that both

this set and the path together constitute a stable set. There is such a set for each node, and they

are all stable; thus their unions stable. This proves the result.

C.2 Star network

Proof. Proposition 2. First consider the case where BH ,C 6= BH ,R . Suppose that the hub interme-

diary in either market is hit by the adverse shock. The withdrawal of the hub intermediary forces

all peripheral intermediaries to stop providing liquidity as they are fully dependent on the hub

intermediary. Thus, in equilibrium y∗
i = 0 for all i and L = 0. Now suppose a peripheral inter-

mediary is hit by the adverse shock. Its withdrawal will not affect any other intermediaries since

their provider of liquidity (the hub intermediary) has not been affected. Thus, in equilibrium

y∗
i = 1 for all intermediaries that did not receive the adverse shock and L = n −1.

The probability that the adverse shock hits the hub intermediary in either market is P (w j∧
j = BH ,µ) = 2/n. Conversely, the probability that the adverse shock does not hit the hub inter-

mediary is P (w j ∧ j 6= BH ,µ) = (n−2)/n. Combing this with the above, the expected equilibrium

liquidity measure is

E [L | BH ,C 6= BH ,R ] = P (w = BH ,µ)L (w = BH ,µ)+P (w 6= BH ,µ)L (w 6= BH ,µ)

= 1

n

[
2

n
0+ n −2

n
(n −1)

]
= (n −2)(n −1)

n2
.

Now consider the case where BH ,C = BH ,R . Clearly, if the hub intermediary is hit by the ad-

verse shock, in equilibrium L = 0. This occurs with probability 1/n. Conversely, if a peripheral

intermediary is hit by the adverse shock, in equilibrium L = n −1. The expected equilibrium
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measure is then given by

E [L | BH ,C = BH ,R ] = 1

n

[
1

n
0+ n −1

n
(n −1)

]
= (n −1)2

n2
.

C.3 Preliminaries: theory of random networks

C.3.1 The configuration model

In the following we introduce random networks which are drawn uniformly at random condi-

tional on a degree distribution. A standard device for generating and analyzing these graphs is

the configuration model. All of the concepts introduced below apply equally to both markets

µ ∈ {R,C }. To avoid notional clutter, we drop the subscript µ for now.

For each n, let d+
n = (d+

i ,n)n
i=1 and d−

n = (d−
i ,n)n

i=1 be sequences of non-negative integers rep-

resenting the out-degrees and in-degrees, respectively, of intermediaries i ∈ N , where as before

n = |N | is the cardinality of the set of intermediaries. Note that all out-edges must have a corre-

sponding in-edge, therefore
∑n

i d+
i ,n = ∑n

i d−
i ,n . For a given n, denote the empirical distribution

of degrees by

p j k,n := 1

n
#{i ∈ N | d+

i ,n = j ,d−
i ,n = k}.

The n in the subscript distinguishes this empirical distribution, associated with a given n, from

an asymptotic distribution that is independent of the particular population size n, which we

will introduce below.

Given d+
n and d−

n satisfying the consistency condition noted above between total in- and

out-degrees, let G(n,d+
n ,d−

n ) be the set of graphs with degree sequences d+
n ,d−

n . We define a

standard device, the configuration model, for drawing graphs uniformly from this set:

Definition C.1 (Bollobás configuration model—see, e.g., Amini et al. (2013)). Consider a set of

nodes N = {1, ...,n} and degree sequences d+
n = (d+

i ,n)n
i=1 and d−

n = (d−
i ,n)n

i=1. Define for each node

i a set of incoming and outgoing half-edges, H−
i and H+

i , respectively. The set of all incoming

and outgoing half edges is denoted by H− and H+, respectively. A random directed multigraph

G̃ (n,d+
n ,d−

n ) drawn from the configuration model is then induced in the obvious way from a

matching of all incoming half-edges H− to outgoing half-edges H+ drawn uniformly at random

from the set of all such matchings. This multigraph may contain self-edges or multiple edges

between two nodes. A graph without self-edges or multiple edges is a simple graph, and we

condition on realizations that yield simple graphs. It is a standard fact that the resulting random

variable is a draw uniformly at random from G(n,d+
n ,d−

n ).
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We are only interested in simple graphs and therefore need to impose conditions on the

degree sequences to ensure that the probability of self-edges and multiple edges vanishes. We

follow Amini et al. (2013) and Britton et al. (2007) and impose some standard conditions to

ensure this, which turn out to yield this and other useful technical properties. The conditions

are easiest to impose on an infinite tuple ((d+
n ,d−

n ))∞n=1 of pairs of degree sequences. The first set

of conditions on an infinte tuple is:

Assumption C.1. For each n, d+
n and d−

n are sequences of non-negative integers such that
∑n

i d+
i ,n =∑n

i d−
i ,n and, for some joint distribution (p j k ) j ,k≥0, over in- and out-degrees

1. p j k,n → p j k for every j ,k ≥ 0 as n →∞,

2. λ :=∑
j ,k p j k j =∑

j ,k p j k k ∈ (0,∞),

3.
∑n

i=1(d+
i ,n)2 + (d−

i ,n)2 =O(n).

Note that conditions (2) and (3) imply that the average degree and the second moment de-

grees cannot diverge as the network becomes large. When this condition holds, we say it holds

and the infinite tuple of degree sequences is consistent with the joint distribution (p j k ) j ,k≥0.

We follow Cooper and Frieze (2004) and further require that the infinite tuple is proper.

The technical assumptions comprising this definition require that a quantity akin to the degree

sequence’s second moment must grow much slower with the network size than the maximum

degree of the sequence. This ensures that, while the maximum degree may go to infinity, the

degree sequence does not become too dispersed:

Assumption C.2 (Proper degree sequences, Cooper and Frieze (2004)). Let ∆n denote the maxi-

mum degree. Then

1. Let ρn = max

(∑
j ,k

j 2kp j k,n

λn
,
∑

j ,k
k2 j p j k,n

λn

)
. If ∆n →∞ with n then ρn = o(∆n).

2. ∆n ≤ n1/12

logn .

We call an infinite tuple that satisfies Assumptions C.1 and C.2 well-behaved.

So far we have dealt with a single network. Now we extend our formalism to deal with

two networks. To do this, we consider two infinite tuples ((d+
C ,n ,d−

C ,n))∞n=1 and ((d+
R,n ,d−

R,n))∞n=1,

which are always well-behaved and are viewed as random variables.

Now note that our assumption that the two networks GR and GC are drawn independently

(Assumption 5.2) implies d+
iC ,n ,d+

i R,n and d+
iC ,n ,d−

i R,n and d−
iC ,n ,d+

i R,n and d−
iC ,n ,d−

i R,n for all i ∈ N .

In other words, the in (out) degree of an intermediary in the repo market gives no information

about its in- (out-) degree in the collateral market. The networks GR,n and GC ,n are indepen-

dent, uniform draws from the sets G(n,d+
n,R ,d−

n,R ) and C (n,d+
n,C ,d−

n,C ), respectively.
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C.3.2 Equilibrium and the mutual giant component

We can now establish a connection between the equilibrium liquidity defined in Section 3 and

certain asymptotic properties of the random graphs defined above.

For eachµ, we fix a joint distribution (p j k,µ) j ,k≥0 over in- and out-degrees and well-behaved

infinite tuples of degree sequences consistent with this distribution.

Definition C.2 (Giant out-component). Define Sµ,n to be any largest-cardinality strong com-

ponent S′
µ,n and all nodes reachable by following a directed path out from S′

µ,n .49 Then the

sequence of graphs is said to have a giant out-component if Sµ,n is well-defined for all large

enough n and

lim
n→∞

1

n
|Sµ,n |→ sµ > 0.

It can be shown that, under the technical assumptions made above, if the sequence has a

giant component, then asymptotically Sµ,n is unique—see Cooper and Frieze (2004). Suppress-

ing the n index, we denote the subgraph of Gµ associated with it by GCo(GR ).

Definition C.3 (Mutual giant out-component). For large enough n, the mutual giant out-component

M = MGCo(GR ,GC ) is defined to be a maximum-cardinality mutually stable subset of both

GCo(GR ) and GCo(GC ) .

The size of the mutual giant out-component and the equilibrium liquidity measure are

then related as follows.

Lemma 4. Let y∗ be an equilibrium for GR , GC and a shock profile w as given in Section 3, with

W being the set of shocked (wi = 0) nodes. Then

L (y∗) = 1

n

∑
i

y∗
i ≥ 1

n
|MGCo(GR (W ),GC (W ))|.

In the limit of large networks we obtain

lim
n→∞

1

n

∑
i

y∗
i → 1

n
|MGCo(GR (W ),GC (W ))|,

The size of the mutual giant out-component is a lower bound on the size of the maximal

mutually stable set, and thus the number of active intermediaries in equilibrium. It is only a

lower bound since there may exist small, mutually stable components outside the mutual giant

out-component. However, as the network becomes large, results from Cooper and Frieze (2004)

imply that the relative size of these small mutually stable components vanishes; the reason is

49Every nonempty proper subset has an edge to its complement or from it.
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that even the weak components in either of the two markets which are not part of the giant out-

component have a negligible size as n →∞ (recall Section 5.2.1). Therefore, in the limit of large

networks the size of the mutual giant out-component is sufficient to compute the equilibrium

liquidity. In the following we will discuss how the mutual giant out-component can be found.

C.3.3 A branching process approximation of equilibrium liquidity

In this section we will invoke results from the theory of branching processes and probability

generating functions to compute the size of the giant mutual out-component (see Cooper and

Frieze (2004) and Buldyrev et al. (2010)). We will first characterize the giant out-component in

a single market (i.e., one graph without any coupling) and will then proceed to derive the size

of the mutual giant out-component.

Computing the giant out-component The distribution of the out-degree of the terminal node

of a randomly chosen link in a large graph is, in the n →∞ limit, given by

p+
k :=∑

j

j

λ
p j k ,

where p j k is the joint distribution for in- and out-degrees (see for example Cooper and Frieze

(2004) and Newman (2010)). Note that the out-link is j times more likely to end up at a node

with in-degree j . The average degree λ enters as a normalizing constant.50

Suppose one starts to explore the network from a randomly chosen link via a breadth-

first search algorithm. How many intermediaries can one reach by following only out-going

links? In a random network model, this exploration process can be approximated by a standard

branching process where the number of offspring (i.e. outgoing links) of any node is distributed

according to (p+
k )∞k=0.51 Let H(z) := ∑

k p+
k zk denote the corresponding probability generating

function. Recall the following useful result on the extinction probability of a branching process

(see Athreya and Jagers (2012)):

Lemma 5. The probability f that the branching process defined by (p+
k )∞k=0 goes extinct is the

smallest solution to f = H( f ).

50The distribution for the in-degree of the terminal node of a randomly chosen link can be defined similarly but
is not of interest for us.

51Of course this only corresponds to the number of intermediaries explored if the breadth-first search does not
turn back on itself and does not re-explore parts it has already seen. The assumption that this does not occur is
usually referred to as the requirement that the network is “locally tree-like”, i.e. that there are no short cycles. Hence
the application of the branching process is indeed an approximation. However, under our maintained technical
assumptions, Cooper and Frieze (2004) show rigorously that this approximation is indeed valid.
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Then, the size of the giant out-component is given by a simple corollary of Lemma 5 (see

for example Newman (2010)) that we summarize in the following lemma.

Lemma 6. Given the probability f that the branching process defined by (p+
k )∞k=0 goes extinct,

the fraction of nodes in the giant out-component is

g ( f ) := 1−∑
j k

p j k f k .

This follows from the fact that the probability that a random node with k outgoing links is

not in the giant out-component is simply f k .

Equilibrium liquidity and the mutual giant out-component Now that we have established

how to compute the size of the giant out-component for a single network we can proceed to

derive the size of the mutual giant component. The following derivation builds on results of

Buldyrev et al. (2010). From now on we will associate each of the quantities introduced in Sec-

tion C.3.3 with the collateral or repo markets via the subscripts C or R respectively. For example,

HC (z) will be the probability generating function of the out-degree process for the network cor-

responding to the collateral market.

Consider the following coupled branching process—first, with x = 1, i.e., no shock. Choose

a link at random in GR and follow it the node it goes into. Since GC and GR are independent by

assumption, the intermediary we reach will be in the giant out-component of GC with proba-

bility sC (the fraction of nodes in the giant out-component in the collateral network).

If the node is not in the giant out-component of GC the branching process will not con-

tinue further. We may equivalently assume that in that case the node reached has no out-

neighbors. As discussed by Newman (2010) the branching process is identical in distribution

to one in which we “thin” the degree distribution of the collateral network as follows:

p̂ j k,R (sC ) :=
∞∑

l= j

∞∑
m=k

plm,R︸ ︷︷ ︸
A

(
l

j

)
(1− sC )l− j s j

C︸ ︷︷ ︸
B

(
m

k

)
(1− sC )m−k sk

C︸ ︷︷ ︸
C

. (6)

The distribution p̂ j k,R (sC ) is the joint distribution of in- and out-degrees of the repo network

after a fraction 1−sC of nodes has been removed uniformly at random. The transformed degree

distribution consists of three terms: A,B and C . A corresponds to the initial probability that

a random node has in-degree l and out-degree m. B is the probability that j out of initially l

in-links are present after thinning. Finally, C is the probability that k out of initially m out-links

are present after thinning. An equivalent argument can be made for the repo market. Again
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we obtain a transformed degree distribution p̂ j k,C (sR ). Similarly, we define the transformed

distributions for the out-degree process p̂+
k,R (sC ) and p̂+

k,C (sR ).

Now, suppose a fraction 1−x of nodes, selected uniformly at random, withdraws from the

markets due to the exit shock. We call 1−x the size of the exit shock. The final size of the mutual

giant out-component (and thus liquidity in the maximal equilibrium) is then determined by

the branching process on the residual networks GR (W ) and GC (W ) after the withdrawal of the

shocked intermediaries. Let L̂ ∗(x) be the expected liquidity of the maximal equilibrium.

Lemma 7. Given the degree-distributions p j k,µ for µ ∈ {R,C } and a shock of size 1− x, the size

of the giant out-component in the repo (collateral) network s∗R (s∗C ) is the greatest solution to

sR = xgR ( fR , sC ) = x

(
1−∑

j k
p̂ j k,R (sC ) f k

R

)
,

fR = HR ( fR , sC ) =∑
k

p̂+
k,R (sC ) f k

R ,

sC = xgC ( fC , sR ) = x

(
1−∑

j k
p̂ j k,C (sR ) f k

C

)
,

fC = HC ( fC , sR ) =∑
k

p̂+
k,C (sR ) f k

C .

(7)

Liquidity is then

L̂ ∗(x) := s∗ = xgR (xgC (s∗)).

To see this, note that the expression xgR (xgC (s∗)) is monotonically increasing in s (see

Lemma 11) in [0,1]. Then by Tarski’s fixed point theorem a maximum fixed point s∗ exists. Note

that the realization of the shock bounds the size of the giant out-component, and thereby equi-

librium liquidity, from above by x. This is simply because a fraction of 1− x of intermediaries

withdraw from the markets due to the exit shock realization.

Suppose now that one of the markets is replace by a centralized exchange so that we can

replace the corresponding network by a complete network. What is the size of the mutual giant

out-component?

Lemma 8. Let GR be a random network. Let ḠC be a complete network. Given a shock of size

1−x, the size of the giant out-component in the repo network s∗R is the greatest solution to

sR = gR ( fR , x) = x

(
1−∑

j k
p̂ j k,R (x) f k

R

)
,

fR = HR ( fR , x) =∑
k

p̂+
k,R (x) f k

R .

54



Liquidity is then

L̂ ∗(x) := s∗R = gR ( fR , x).

Thus, if the collateral network is replaced by a complete network, the size of the mutual gi-

ant out-component is simply the size of the giant out-component of the repo network taken on

its own (we have discussed the study of its size above). To see this, first note that if ḠC is com-

plete there will be no contagion through ḠC . All intermediaries in ḠC are active except those

that are not in the giant out-component of the repo market. Therefore it is not necessary to

compute the size of the giant out-component in the collateral network via a branching process

as in Lemma 7. The greatest fixed point exists by the same argument as in the proof of Lemma

7.

C.4 Proofs of random network results

In the following we will prove Propositions 4 and 5. Our main contribution is to provide con-

ditions on the degree distributions of the random networks for which Propositions 5 holds. We

will first provide a sketch of the proof of Proposition 4 since this is a standard result from the

literature (see Cooper and Frieze (2004)) and is useful for the subsequent proofs of Proposition

5.

For the proof of Proposition 4 we will use standard properties of a generic probability

generating function (pgf) that we summarize in the following remark.

Remark 1. A generic pgf f (s) =∑
i pi si has the following properties:

(i) f (0) = p0,

(ii) f (1) = 1,

(iii) f ′(1) = d f /d s(1) > 0 (increasing),

(iv) d 2 f /d s2 > 0 (convex) for s > 0.

Therefore s∗ = f (s∗) has a solution s∗ < 1 if f ′(1) > 1. Otherwise only the trivial solution s∗ = 1

exists. s∗ = 0 is not a solution if p0 > 0. Note that the solution s∗ is continuous in the slope f ′(1),

i.e. as f ′(1) → 1 we have that s∗ → 1.

We illustrate some graphical intuition for this proof in Fig 11 in Appendix D.

Proof. Proposition 4. Recall that for x = 1 we have H(z) =∑
k p+

k zk with p+
k =∑

k j p j k /λ. It can

be shown, see for example Newman (2010) or Cooper and Frieze (2004), that after a fraction
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1− x of intermediaries are removed uniformly at random from the network, the pgf of the out-

degree distribution becomes Ĥ(z, x) = H(1−x +xz). From remark 1 we know that f = H( f ) = 1

if d H/d z(1) = H ′(1) ≤ 1 and f < 1 if H ′(1) > 1. When f = 1 the size of the giant out-component

vanishes, i.e. g (1) = 0. If f < 1 the size of the giant out-component is g ( f ) > 0, i.e. the giant out-

component exists. Thus we need to ask at which xc the derivative of the pgf becomes Ĥ ′(1) = 1.

Note that Ĥ ′(1) = xH ′(1). Thus

xc = 1

H ′(1)
= λ∑

j k p j k j k
. (8)

Since f is continuous as the derivative Ĥ ′(1) changes, it is also continuous in x which deter-

mines Ĥ ′(1). Note that Assumption 5.1 ensures that in the absence of an exit shock there exists

a giant out-component of positive size. This concludes the proof.

Lemma 9. Let f (x) denote the smallest solution f = H( f , x). Then f (x) is continuous, mono-

tonically decreasing in x for x ∈ [0,1].

Proof. Lemma 9. f (x) = H( f (x), x) is continuous follows from the proof of Proposition 4. To

show that f (x) is monotonically decreasing we use the result from the proof of Proposition 4

that x ∈ [0, xc ]: f = 1 =⇒ d f /d x = 0. Now consider what happens when x ∈ (xc ,1] and f < 1.

In this case we derive for d f /d x:

d f

d x
= 1

λ

∑
j k

j kp j k (1−x +x f )k−1

︸ ︷︷ ︸
d H/d f 1/x

(
f +x

d f

d x
−1

)
,

d f

d x
= d H

d f
( f , x)

1

x

(
f +x

d f

d x
−1

)
,

d f

d x
= d H

d f
( f , x)

1

x

(
1− d H

d f
( f , x)

)−1

( f −1).

Note that for supercritical x the derivative of H( f , x) with respect to f evaluated at the intersec-

tion with the diagonal is less than one, i.e. for x ∈ (xc ,1] d H
d f ( f , x) < 1, where H( f , x) = f < 1; see

Fig. 11 in Appendix D for a graphical intuition. This can be seen as follows. Clearly for there to

exist a solution f < 1 to f = H( f , x), H( f , x) must cross the diagonal. But since d H
d f (1, x) > 1 for

x ∈ (xc ,1] and H(1, x) = 1, H( f , x) must cross the diagonal from below when approaching the

intersection from the right. This implies that d H
d f ( f , x) < 1 at the intersection. This together with

0 < x, f < 1 and d H
d f ( f , x) > 0 implies that d f

d x < 0.

Lemma 10. g ( f , x) is continuous and monotonically increasing in x for x ∈ [0,1].

Proof. Lemma 10. The fact that g ( f , x) is continuous follows directly from the proof of Propo-
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sition 4. g ( f , x) is monotonically increasing since

d g

d x
=−∑

j k
p j k k( f (x)x +1−x)k−1

(
d f

d x
x + f (x)−1

)
︸ ︷︷ ︸

≤0

≥ 0.

Let F (s, x) := xgR (xgC (s)). In order to prove Proposition 5 we first need to establish a

couple of facts about F (s, x) which we summarize in the following lemma. We will use the index

µ ∈ {R,C } whenever results apply to both repo and collateral networks.

Lemma 11. For s ∈ (0,1]

1. F (s, x) is continuous in s,

2. F (s, x) is monotonically increasing in s,

3. F (s, x) is bounded from above: F (s, x) ≤ x,

4. F (s, x) is concave in s,

5. lims→0 F (s, x) → 0,

6. lims→0
∂F (s,x)
∂s → 0.

Proof. Lemma 11. For this proof we invoke results from Lemmas 9 and 10. For s ∈ (0,1]:

1. F (s, x) is continuous: gµ(s) is continuous as shown in Lemma 10. F (s, x) is a function of

gµ(s) and therefore also continuous in s.

2. F (s, x) is monotonically increasing: gµ(s) is monotonically increasing as shown in Lemma

10. F (s, x) is therefore also monotonically increasing in s.

3. F (s, x) is bounded from above - F (s, x) < 1: Clearly gµ(s) is bounded from above since

gµ(s) ≤ 1. Furthermore, assuming a positive shock size, i.e. x < 1, we have F (s, x) =
xgR (xgC (s)) < 1. Also note that the above implies that F (s, x) has a maximum at s = 1

which scales with x, i.e. as x is decreased the maximum of F (x, s) decreases by at least the

same amount.

4. F (s, x) is concave in s:

∂2F

∂s2
(s, x) = x2

(
x

d 2gR

d s2
(s)

(
d gC

d s
(s)

)2

+ d gR

d s
(s)

d 2gC

d s2
(s)

)
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Since
d gµ
d s (s) > 0,

d 2gµ
d s2 (s) < 0 (by Assumption 5.3) and x > 0 we must have ∂2F

∂s2 < 0, i.e.

F (s, x) concave.

5. lims→0 F (s, x) → 0: Since for s < sc,µ we have fµ(s) = 1 and gµ(s) = 0, where sc,µ is the

threshold for network µ at which the giant out-component vanishes as given in Proposi-

tion 4. In other words, there exists a critical sc,µ at which the giant out-component in one

of the intermediation networks vanishes (recall that we assume that λ <∞, hence there

always exists this critical sc,µ by Proposition 4).

6. lims→0
∂F
∂s (s, x) → 0:

lim
s→0

∂F

∂s
(s, x) = x2 d gR

d v
(v)

d gC

d s
(s) → 0.

Since for s < sc,µ we have fµ(s) = 1 and gµ(s) = 0. Hence for s < sc,µ we have
d gµ
d s (s) = 0.

In other words, since there exists a critical sc,µ at which the giant component vanishes in

one of the intermediation networks, there is a region for values of s < sc,µ in which F (x, s)

is flat.

These observations show that, under the assumptions made here, F (x, s) can be decomposed

into two regions: (i) for small values of s (s < sc,µ) F (x, s) vanishes (F (x, s) = 0) and is flat

(∂F /∂s = 0). (ii) for larger values of s (s > sc,µ) F (x, s) is strictly monotonically increasing and

concave but bounded from above (F (x, s) < 1).

Proof. Proposition 5 A. This proof invokes results from Lemma 11 and relies in particular on our

observations of the shape of F (x, s) in the interval s ∈ [0,1]. We illustrate the graphical intuition

for this proof in Fig. 12 in Appendix D.

First note that s = 0 is a trivial solution to s = F (s, x) for all x since gµ(0) = 0. Furthermore

as shown in Lemma 11 there exists a region for sufficiently small s in which F (s, x) is constant

and equal to zero. As seen in Lemma 11, for all s > sc,µ the function F (s, x) is strictly increasing

and concave provided gµ(s) is concave. The fact that F (x, s) is constant and flat close to s = 0

implies that in at least some of the interval s ∈ [0,1], F (x, s) must lie below the diagonal. If for

s > sc,µ the function F (x, s) increases sufficiently fast to cross the diagonal there will exist two

solutions in addition to the trivial solution (since for x < 1 F (x, s) < 1 and hence cannot remain

above the diagonal for the entire interval s ∈ [0,1]).

Note that Assumption 5.1 ensures that in the absence of an exit shock there exists a mutual

giant out-component of positive size. Since we are investigating cascades following a small exit

shock we are only interested in the largest fixed point s∗ of the map sn = F (sn−1, x) with s0 = x.

This fixed point will be stable due to the concavity of F (s, x) and because at s∗ the slope of F (x, s)

is ∂F /∂s(s∗, x) < 1.
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Now consider how the largest fixed point s∗ changes when the initial exit shock 1− x is

increased. Clearly, when x goes down, s∗ goes down as well. This is because for a smaller value

of x the curve F (s, x) will have a smaller maximum value. This pushes the entire segment of the

curve of F (x, s) for s > sc,µ downwards. Therefore F (s, x) will intersect the diagonal at a smaller

value. When both x and s∗ decrease further the curve F (s, x) will ultimately become tangent to

the diagonal. This will correspond to some critical value xc . At this point the largest solution s∗

merges with the second largest on the diagonal.

If x is decreased further (x < xc ) both non trivial solutions vanish and only the trivial so-

lution at s = 0 remains. In summary, if there exists some fixed point of F (x, s), s∗, and an exit

shock of a critical size 1− xc such that F (x, s) is tangent to the diagonal (∂F
∂s (s∗, xc ) = 1), then

there will be a region below xc where only the trivial solution exists (s∗ = 0) and a region above

xc where a non trivial solution 0 < s∗ < 1 exists.

Note that, since there exists some value sc,µ > 0 at which the derivative ∂F /∂s(s, x) van-

ishes, F (x, s) must lie below the diagonal close to s = 0. Therefore, the non trivial solution must

always be greater than zero, i.e. s∗ > 0 for x ≥ xc . Therefore

lim
ε→0

F (s∗, xc −ε) = 0 6= F (s∗, xc ) > 0.

Hence F (s, x) is discontinuous in x at x = xc . From the above it also follows that, if there exists

no 0 < s∗ < 1 such that at some x = xc > 0, ∂F
∂s (s∗, xc ) = 1, then only the trivial solution can exist

and F (s∗, x) = 0 ∀ x < 1. In this case a minimal disturbance of the network leads always to a

complete collapse of the network.

Now let us turn to the Proposition 5 B.

Proof. Proposition 5 B. Let’s write rc = rc (GR , ḠC ) and xc = xc (GR ,GC ). Suppose we have 1−xc ≥
1−rc (xc ≤ rc ). Note that by definition at rc , the size of the giant component in the repo network

vanishes, i.e. gR (rc ) = 0. Also, F (s, xc ) = xc gR (xc gC (s)) < rc since F (s, xc ) < xc for s < 1 and

xc ≤ rc by assumption. However, at a fixed point we must have that F (s, xc ) = s. Thus for any

solution s, we have that s < rc and hence xc gC (s) < rc . But we must have that gR (s) = 0 for all

s < rc . This implies that at the fixed point s∗ = 0. However this contradicts F (s∗, xc ) > 0 which is

required by Proposition 5 A. This proves Proposition 5 B by contradiction.
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Figure 11: Graphical intuition for proof of Proposition 4. We are interested in fixed points f ∗ =
H( f ∗, x) with f ∗ < 1. We plot H( f , x) for two choices of x. Note that the value of x determines
the slope of H( f , x) at f = 1. The dashed green line corresponds to the case when x is such
that d H(1, x)/d f > 1 while the continuous red line corresponds to the case when x is such that
d H(1, x)/d f = 1. Due to the convexity of H( f , x) in f , d H(1, x)/d f ≤ 1 implies that there will
be no fixed point apart from f ∗ = 1 in the interval [0,1]. Thus d H(1, xc )/d f = 1 determines a
critical value of x at which f ∗ < 1 merges with f ∗ = 1.
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Figure 12: Graphical intuition for proof of Proposition 5. We are interested in the greatest fixed
point y∗ = F (y∗, x) with y∗ > 0. We plot F (y, x) for two choices of x. Note that the value of x
determines the slope of F (y, x) at y∗. The dashed green line corresponds to the case when x is
such that dF (y∗, x)/d y > 1 while the continuous red line corresponds to the case when x is such
that dF (y∗, x)/d f = 1. As x is decreased F (1, x) and y∗ decrease. At some critical xc the curve
F (y, x) will become tangent to the diagonal. If xc is decreased any further, y∗ > 0 disappears
and only the trivial fixed point y∗ = 0 remains.
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E Calculations for example random networks

E.1 Erdos-Rényi network

Let q denote the probability that a randomly chosen intermediary is connected to another inter-

mediary by an outgoing or incoming link. Here, due to the independence of in- and out-degrees

the joint degree distribution factorizes into p j k = p j pk with p j = pk and

pk =
(

n −1

k

)
qk (1−q)n−k−1.

When we hold the average in- and out-degree λ= nq fixed and take the limit n →∞ the gener-

ating function for the out-degree distribution of a random node becomes

G(z) = eλ(z−1),

Note that for the Erdős-Rényi network the generating function for the out-degree of a random

node is equal to the generating function of the out-degree of the terminal node reached by

following a random link (Newman, 2002). Thus, we have G(z) = H(z). As shown in appendix

C.3, after an exit shock removing a fraction 1−x of nodes, the generating functions become

Ĝ(z, x) = Ĥ(z, x) =G(1−x + zx) = H(1−x + zx) = eλx(z−1),

As before, we compute equilibrium liquidity as the size of the giant out-component of the repo

network: L ∗(x) = s∗. In Figure 6 we solve for s∗ numerically.

E.2 Scale free networks

Now let’s consider the case where GC and GR are directed networks with the same power law

in- and out-degree distributions (also known as scale free networks). Networks with this degree

distribution can be formed for example through a preferential attachment process as outlined

in Barabási and Albert (1999). As for the Erdős-Rényi networks we assume that the in- and

out-degrees are independent, such that p j k = p j pk . We also assume that p j = pk = Cµk−α for

α ∈ (2,3] and k > 1. The constant that normalizes the degree distribution is C = 1/(ζ(α)−1),

where ζ(·) is the Riemann zeta function. Also define the generating functions with their usual

meanings

G(z) =C
∑
k>1

k−αzk =C (Liα(z)− z),

3



where Lis(z) is the polylogarithmic function defined by:

Lis(z) = ∑
k=1

zk

k s
,

where s is complex number and z is a complex number with |z| < 1, which is clearly valid here.

In the following we will only consider real s and z. We also have

H(z) = 1

λ

∑
j

p j j
∑
k

pk zk =G(z).

As before we have that Ĝ(z, x) = G(1− x + zx) and Ĥ(z, x) = H(1− x + zx). We can make the

substitution w = 1− x + zx, i.e. z = (w + x −1)/x. Then to find the extinction probability of the

branching process we must solve

(w +x −1)/x = H(w) =C (Liα(w)−w)

Again we compute equilibrium liquidity as the size of the giant out-component of the repo

network: L ∗(x) = s∗. In Figure 7 we solve for s∗ numerically.

F Overlap between repo and collateral networks

It is useful to write the equations (7) slightly differently. In particular let us introduce

s̃R = gR ( fR , x −x(1− s̃C )),

fR = HR ( fR , x −x(1− s̃C )),

s̃C = gC ( fC , x −x(1− s̃R )),

fC = HC ( fC , x −x(1− s̃R )),

where sR = xs̃R and sC = xs̃C . Clearly x − x(1− s̃C ) is simply the fraction of nodes remaining

after the initial shock 1− x minus the number of nodes that are not in the giant component of

GC but remain in the network after the initial shock 1− x. We can make a crude, but simple,

approximation to the effect of overlap as follows. Only intermediaries which do not lie outside

the giant component in GR can withdraw upon their withdrawal in GC . The fraction of nodes

that are in the giant component in GR but not in the giant component of GC is approximately

4
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with different levels of network overlap.
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(1− s̃C )(1−ω). Thus we obtain

s̃R = gR ( fR , x −x(1− s̃C )(1−ω)),

fR = HR ( fR , x −x(1− s̃C )(1−ω)),

s̃C = gC ( fC , x −x(1− s̃R )(1−ω)),

fC = HC ( fC , x −x(1− s̃R )(1−ω)),

0

Note that this formulation reduces to the centralized market benchmark forω= 1 and the usual

two network case for ω= 0.

Recall from section E that the generating functions for the Erdős-Rényi network are given

by

Ĝ(z, x) = Ĥ(z, x) =G(1−x + zx) = H(1−x + zx) = eλx(z−1),

Then it can be shown that
s̃R = 1−e−λR x(1−s̃C )(1−ω)s̃R ,

s̃C = 1−e−λC x(1−s̃R )(1−ω)s̃C .

If we take λR = λC , due to the symmetry of the expressions above we must have s̃R = s̃C , hence

we can reduce the above to a single equation

s = 1−e−λx(1−s)(1−ω)s . (9)

We know that there exists a regime for ω for which we observe a continuous transition at the

critical exit shock (e.g. ω = 1) as well as a regime with a discontinuous transition (e.g. ω = 0).

The critical value of ω at which the transition switches from continuous to discontinuous is

often referred to as the tri-critical point. We can follow the standard procedure to determine

the tri-critical point at which the transition becomes discontinuous, cf. Son et al. (2012). Let us

first define the deviation measure

h(s) = s − (1−e−λx(1−s)(1−ω)s).

Suppose we are in a regime of ω in which the transition is continuous. Close to the critical

exogenous shock we have ε= s ≈ 0 and we can expand around h(0) to approximate h(ε), i.e.

h(ε) = h′(0)ε+ 1

2
h′′(0)ε2 + 1

6
h′′′(0)ε2 +O(ε4).

Suppose for now that the first and second derivatives are non zero. At a solution of Eq. (9) we
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must have h(ε) = 0. If we ignore higher order terms and solving for ε we obtain

ε≈ 2h′(0)

h′′(0)
,

At the critical point ε= 0. Thus, provided h′′(0) 6= 0, at the critical point we must have h′(0) = 0.

It can be shown that dε/d x does not diverge at the critical point in this case. Now suppose that

h′′(0) = 0. When solving for ε we now need to include higher order terms. Thus

ε≈
√

6h′(0)

h′′′(0)
,

By applying the chain rule we find that dε/d x = ∂ε/∂h′(0)∂h′(0)/∂x +R, where R corresponds

to the remaining terms of the derivative. Note that ∂ε/∂h′(0) ∝ 1/
p

h′(0). Thus, when h′(0) =
h′′(0) = 0, the derivative dε/d x diverges and a discontinuous transition emerges. Solving for the

value ofω at which the first and second derivatives go to zero, we obtain thatωc = 2/3. Thus, for

coupled Erdős-Rényi networks there exists a discontinuous transition as long as approximately

one third of the links differ between the two networks.

G Interpolating between scale-free and core-periphery networks

Many financial networks can be characterized as core-periphery networks. In Section 4.2, we

showed how illiquidity spirals unfold in stylized core-periphery networks. We showed that for

such perfect core-periphery networks, a discontinuous transition as observed in Section 5 does

not occur. However, for scale-free networks a discontinuous transition is observed. Arguably,

real financial networks are neither perfectly core-periphery, nor perfectly scale-free but some-

where in between these extremes.

In the following, we propose a very simple approach to interpolate between scale-free

and core-periphery networks. We begin by constructing a scale-free network as outlined in

Appendix C with tail exponent α = 2.5 and N nodes using the configuration model. We then

designate the NC nodes with the highest degree as the core. With probability pC we connect to

core nodes that are not yet connected. Similarly, with probability 1−pP , we remove an existing

link between two periphery nodes. Clearly for pc = 0 and pP = 1 we leave the scale-free network

unchanged. For pC = 1 and pP = 0 we obtain a perfect core-periphery network. We repeat this

procedure to generate two coupled but independent networks.

Figure 14 shows that the transition is smoothed out (as opposed to being discontinuous)

as the core becomes more connected. If the core remains unchanged, but peripheral links are

7
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Figure 14: (a) Interpolating between scale-free and core-periphery networks. N = 10000, NC =
1000. (b) Finite size effects for scale-free networks.

removed, the transition is less smooth and liquidity evaporates quicker for smaller shocks. We

conjecture that there will be some critical pC and pP at which the discontinuous transition

disappears. This can be found via a grid search over these parameters. Also note that the dis-

continuous transition is smoothed when the network is smaller, see Figure 14.

In Figure 15 we study how the equilibrium liquidity measure depends on the size of an

exit shock for different core-periphery networks. We vary pc ∈ [0,0.02], i.e. we slightly increase

the number of links within the core. This has a sizeable impact on the resilience to a shock.

The high sensitivity of the system to the existence of additional links within the core is an im-

portant insight from our analysis with implications for policy makers tasked with safeguarding

financial stability: a market freeze does not have to be complete to leave a system of coupled

core-periphery networks much more vulnerable to exit shocks. It matters where previously ex-

isting links are cut.

H Cascade sizes in small networks

Suppose we are interested in understanding how fragile a particular network of relatively small

size N ≈ 100 is to the removal of a single node. The fragility of the network depends on the

structure of the network. So far, we have always studied networks generated according to some
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Figure 15: Interpolation between scale-free and core-periphery networks (a) shows how the
equilibrium liquidity measure depends on the size of the exit shocks for core-periphery net-
works with varying probability pc of two previously unconnected core nodes becoming con-
nected. (b) shows the maximum slope of the curves shown in (a) for every value of pc .

canonical model, such as core-periphery networks, Erdős-Rényi networks or scale-free net-

works. In the set up we have been studying small shocks typically resulted in relatively small

cascades. For some networks we then show that a discontinuous transition occurs for suffi-

ciently large shocks.

It is worth noting that, ex-ante, we do not know whether a particular financial network is

in a regime where small shocks lead to small changes in liquidity or in a fragile regime where

small shocks can have drastic consequences. To understand this statement, note that any net-

work with N nodes can be interpreted as the remains of a larger network with M > N nodes

following an exogenous shock of size 1−x.

In the following, we consider the size of cascades caused by the removal of a single node

from two “critical” coupled scale-free networks. The critical coupled scale-free networks are

generated by initializing two coupled scale-free network with N = 100 nodes in the usual way.

Then, we randomly remove a fraction 1− x = 0.35 of the nodes and iterate the best response

algorithm until the best responses have converged. This leaves us with two coupled networks

that are close to the discontinuous transition of scale-free networks as N →∞. Ex-ante we have

no reason to believe that this critical network is less likely than other network configurations.

We then remove a single node at random and study the size of the cascade. Figure 16

shows a histogram of cascade sizes. The distribution is bimodal. In the majority of cases, the

removal of a single node does not lead to any cascade at all. However, for a significant fraction of

cases, the removal of a single node is catastrophic and the resulting cascade leads to a complete
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Figure 16: (a) Small network cascade sizes. (b) Small network cascade sizes vs. fragile set cen-
trality.

evaporation of liquidity.

What determines whether the removal of a node is catastrophic? One way of studying this

question is by studying the “fragile set” of a particular node i . The fragile set of node i is the set

of nodes whose best response to the withdrawal of node i is to withdraw from both markets. In-

tuitively, the extent of the cascade following removal of node i increases with the size of a node’s

fragile set and interconnectedness of nodes in the fragile set. Figure 16 shows the the fraction

of surviving nodes conditional on the sum over the eigenvector centralities of the nodes in the

fragile set of node i . To produce the plot we aggregate the results of 500 runs into 5 bins based

on the sum of the eigenvector centralities of the nodes in the fragile set. Intuitively, eigenvector

centrality is a measure of a node’s influence in a network. The more influence the nodes in i ’s

fragile set have, the larger is the size of the ensuing cascade. These results are particularly rele-

vant for supervisory authorities tasked with safeguarding financial stability since they capture

two aspects of systemic risk: the probability of a systemic event and it’s extent.
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I A simple trading model with intermediation and complemen-

tary assets

In Section 2 we introduce a model of intermediaries’ willingness to trade in two coupled over-

the-counter markets. We intentionally abstract from the end customers of repo and collateral

assets (e.g. investors) and focus instead on the actions of the intermediaries. We then interpret

the activity of intermediaries as a proxy for liquidity in these two markets. Here, we show how

our framework can be embedded into a simple but more complete trading model with inter-

mediation. That is, we outline the structure of trading in an OTC market with intermediaries

and end customers. Based on this structure, we propose a model of liquidity provision in two

coupled OTC markets that provides micro-foundations for some of the assumptions made in

Section 2. This allows us to illustrate why our proxy for liquidity can indeed be related to the

liquidity accessible to end customers.

To set the stage for the model, we first describe a OTC market for a particular asset, not

coupled to another market. As in the main text, there is a set N of intermediaries connected by

a graph G . For simplicity, in this section, we assume the graph is undirected, i.e. that for any

edge (i , j ) ∈ E there is also an edge ( j , i ) ∈ E .

A directed link (i , j ) ∈ E(G ) represents that i can buy the asset from j . In addition to

the trading relationships that intermediaries maintain among themselves, each intermediary

i ∈ N has relationships with a set of end customers Mi . For simplicity, assume that the sets of

intermediaries’ end customers are disjoint and of equal cardinalities.

Consider a static trading setting. Two customers, s and b, are selected uniformly at ran-

dom from
⋃

i Mi . The seller s is endowed with a unit of the asset, which it values at vs . The

buyer b has a valuation of vb > vs for the one unit. Focus on the case where the two customers

do not share the same intermediary, i.e. b ∈ Mi and s ∈ M j with i 6= j .52 The only way to realize

the potential surplus vb − vs is to trade via a path in G : the asset can only be transacted along

links in the network. As in the main text, each intermediary has an activity ai ∈ {0,1}.

For a given action profile a, provided there is a path from i to j in the network of trading

relationships G consisting of active intermediaries, b and s will be able to trade and the total

surplus of vb − vs will be realized.53 The existence of such a path, and hence the likelihood that

i and j can trade, is thus determined by the component structure of G . Indeed, an asset can be

transacted between customers of i and j in either direction precisely when they are both in the

52As |N | grows and |Mi | remains fixed, this case is by far the most likely.
53The distribution of this surplus among buyer, seller and intermediaries will depend on the bargaining protocol

as well as the network topology, see for example Choi, Galeotti, and Goyal (2017) or Manea (2015).
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same stable component of G .

Trading in OTC repo and collateral markets

Having established the basic link between component structure and the liquidity available to

customers, we next turn to intermediary behavior in a coupled network model. We show how

the intermediaries’ best response functions outlined in Section 2 can be obtained from an in-

termediary profit function that is still stylized, but includes more financial detail than the sim-

plified form in our main text.

There is an OTC market for repo, as well as one for collateral, represented by the networks

of intermediaries GR and GC , respectively. Now the fundamental demands driving trade are

realized in both networks. Let sR and bR be the ultimate lender and borrower of repo, respec-

tively. Let sC and bC be the seller and buyer of collateral, respectively. (We identify these with

the corresponding intermediaries, in view of the discussion above.) We study a static setting:

the sale and intermediation of collateral, as well as the issuance and intermediation of the repo

loan, occur simultaneously in a single period.54 We further assume that, also within the same

period, a repo loan issued by an intermediary may default due to an exogenous shock. Define

the following indicator random variables:

X C
i =1{i is on a directed path from bC to sC in GC },

X R
i =1{i is on a directed path from sR to bR in GR },

Di =1{repo loan by i has defaulted}.

All variables in the following are intermediary-dependent, but the index i is suppressed. The

intermediary has two binary decision variables, aR , aC ∈ {0,1}, which have the same interpreta-

tion as in Section 2.

We now write down a profit function that captures the essential aspects of intermediation

of collateral. If the intermediary is on a directed path from the seller to the buyer of collat-

eral, then it derives some (expected) intermediation spread if it successfully intermediates the

transaction of the asset (say, a bond). However, this requires that the intermediary have access

to repo financing; that is its source of cash (since it does not hold cash reserves). It can obtain

this financing if it is on a directed path of active intermediaries from the ultimate source of repo

financing to its ultimate “sink.” In that case it pays interest on the loan it uses to finance its

collateral purchase. Regardless of whether it successfully intermediates, the intermediary, if it

54In doing so, we follow classic models such as Goyal and Vega-Redondo (2007). Of course, dynamics are critical
to intermediation, and this examined in work such as Manea (2015) and Condorelli et al. (2016). To focus on the
distinctive aspects of the coupled network setting, we abstract form the complexities of dynamics.
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chooses to be active, pays a cost (e.g., for the staff to operate the trading). Putting values to these

costs and benefits, the profit of an intermediary from being active in the collateral market can

be written as:

ΠC = [(
v X C − r

)
X R aR − c

]
aC .

Here c is the cost of being active. The expected revenue from collateral intermediation condi-

tional on being on an intermediation path is v , and it is multiplied by X C , which is the indicator

variable of being able to intermediate the collateral.55 The rate r is the interest rate that must

be paid for repo financing during that period. The variables v , X C and X R depend on other

intermediaries’ activity decisions (in the case of v , because the expected profit depends on how

many other intermediaries are available to intermediate).

We note several features of this profit function. First, if the intermediary is not active in the

collateral market (aC = 0), the profit is zero. Second, if the intermediary is not active in the repo

market (aR = 0), the profit is −caC . Third, in order for intermediating collateral to be profitable,

the profit from intermediating the collateral asset v X C must be larger than the cost of repo

financing r . Fourth, notice that the multiplicative term X C X R captures the complementary

nature of repo and collateral.

Now we consider intermediation of repo loans. Here, the story is parallel to the one above.

An external demand for a loan is realized at intermediary bR and a unit of cash is available at

an external repo source, at intermediary sR . An intermediary can obtain intermediation rents,

but suffers a liquidation cost if a counterparty defaults and the intermediary lacks access to the

collateral market. The profit of an intermediary from being active in the repo market is

ΠR = [
w X R − cD X R D

(
1−X C aC )− c

]
aR ,

where w is the repo intermediation spread, c is a cost of being active in the repo market, and

cD is a default cost. The intermediary earns revenue w X R from intermediation if it is on a

repo intermediation chain. If a repo loan that it provided defaults and if it cannot liquidate

the collateral in the collateral market, the intermediary incurs a default cost cD . To liquidate

collateral, the intermediary has to be active in the collateral market and in a trading chain to a

collateral buyer.

Now assume for simplicity that the random variables X C , X R and D are independent given

other intermediaries’ activity decisions (which we suppress as arguments in our notation). Fur-

ther, let us introduce the following notation: X
C

:= E[X C ], X
R = E[X R ] and D = E[D]. The ex-

55The share of revenue an intermediary can expect depends on the exact protocol of trade, etc., but we average
over this in setting the value v .
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pected profits are then:

E[ΠC ] =
[(

v X
C − r

)
X

R
aR − c

]
aC ,

E[ΠR ] =
[

w X
R − cD X

R
D

(
1−X

C
aC

)
− c

]
aC .

Note that when the intermediary has no incoming links from active intermediaries in the repo

(collateral) market, we must have X
R = 0 (X

C = 0). This is because the intermediary can only lie

on a trading chain in a particular market if it has an incoming link from active intermediaries.

To understand when we can recover the best responses of Section 2, let us now consider

the intermediary’s best response for different values of X
C

and X
R

. Clearly, when X
C = 0 and

X
R = 0, the intermediary’s best response is to be inactive, i.e. aC = aR = 0. Also, when X

C >
0 and X

R = 0, the intermediary’s best response is to be inactive. If X
C = 0 and X

R > 0 the

intermediary’s best response is to be inactive if

w X
R − cD X

R
D − c < 0.

This condition ensures that the default costs are sufficiently large such that the intermediary

is not willing to intermediate repo if it cannot liquidate the collateral. Finally, when X
C > 0

and X
R > 0, the intermediary’s best response is to be active, i.e. aC = aR = 1, if the following

conditions hold: (
v X

C − r
)

X
R

aR − c > 0,

w X
R − cD X

R
D

(
1−X

C
aC

)
− c > 0.

and furthermore w X
R − cD X

R
D − c < 0. The first condition states that the revenue from col-

lateral intermediation minus the cost of repo financing is larger than the cost of being active.

The second condition states that the revenue from being an intermediary in the repo market

minus the expected cost of being unable to liquidate the collateral in case the borrower defaults

is larger than the cost of being active.56 If the three equations equations hold (for all nodes),

then the best responses are, indeed, as outlined in Section 2.

As for the case of a single OTC market, the intermediarys’ activity decision is directly re-

lated to the liquidity available to the end customers who wish to trade collateral and repo. For

example, two randomly selected buyers and sellers of collateral will only be able to trade if there

is an intermediation chain of intermediaries that operate in both markets simultaneously. In a

random network model of the type studied in Section 5, this will boil down to the probability

that the seller and buyers’ intermediaries are in the mutual giant component. Thus, the number

56If any of the inequalities is reversed, the intermediary will shut down in one, and hence in both markets.
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of active intermediaries can serve as a proxy for the liquidity available for end customers.
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