Social Learning and Influence in Networks

Benjamin Golub

Department of Economics, Harvard

October 15, 16, 18, 2018
Northwestern
Plan

- Lecture notes at bengolub.net ("Current Teaching").
 - On interactive learning: rough lecture notes.
 - On sequential social learning: G and Sadler survey, Section 2.

- Quick reminder of "sacrificial lambs.

- Main material for today:
 - Finishing sequential social learning: idea of diffusion.

- Time permitting, begin linear updating models.
Lecture notes at bengolub.net ("Current Teaching").
 - On interactive learning: rough lecture notes.
 - On sequential social learning: G and Sadler survey, Section 2.

Review/cleanup from yesterday:
 - Interactive learning agreement with coarse actions.

On sequential learning, MG property of likelihood ratio $r_n = q_{n+1} - q_n$.
Plan

- Lecture notes at bengolub.net ("Current Teaching").
 - On interactive learning: rough lecture notes.
 - On sequential social learning: G and Sadler survey, Section 2.
- Review/cleanup from yesterday:
 - Interactive learning agreement with coarse actions.
 - On sequential learning, MG property of likelihood ratio
 \[r_n = \frac{q_n}{1-q_n}. \]
Plan

- Lecture notes at bengolub.net ("Current Teaching").
 - On interactive learning: rough lecture notes.
 - On sequential social learning: G and Sadler survey, Section 2.

- Review/cleanup from yesterday:
 - Interactive learning agreement with coarse actions.
 - On sequential learning, MG property of likelihood ratio
 \[r_n = \frac{q_n}{1-q_n}. \]
 - Quick reminder of “sacrificial lambs.”

- Main material for today:
 - Finishing sequential social learning: idea of diffusion.
 - Time permitting, begin linear updating models.
Plan

- Lecture notes at bengolub.net ("Current Teaching").
 - On interactive learning: rough lecture notes.
 - On sequential social learning: G and Sadler survey, Section 2.
- Review/cleanup from yesterday:
 - Interactive learning agreement with coarse actions.
 - On sequential learning, MG property of likelihood ratio
 \[r_n = \frac{q_n}{1-q_n}. \]
 - Quick reminder of "sacrificial lambs."
- Main material for today:
 - Finishing sequential social learning: idea of **diffusion**.
Plan

▶ Lecture notes at bengolub.net (“Current Teaching”).
 ▶ On interactive learning: rough lecture notes.
 ▶ On sequential social learning: G and Sadler survey, Section 2.

▶ Review/cleanup from yesterday:
 ▶ Interactive learning agreement with coarse actions.
 ▶ On sequential learning, MG property of likelihood ratio
 \[r_n = \frac{q_n}{1-q_n}. \]
 ▶ Quick reminder of “sacrificial lambs.”

▶ Main material for today:
 ▶ Finishing sequential social learning: idea of \textit{diffusion}.
 ▶ Time permitting, begin linear updating models.
A social learning setting consists of:

- \mathcal{N} – a set of players;
- \mathcal{A} – a common action space;
- Θ – state space;
- $u : \mathcal{A} \times \Theta \rightarrow \mathbb{R}$ – a common utility function;
- \mathcal{S} – private signal space;
- μ_i for each i – i’s prior over $\Omega = \Theta \times \mathcal{S}^\mathcal{N}$.

Interactive learning protocol:

- At $t = 0$, get s_i and take actions $a_i(0)$ [all simul.].
- For $t \geq 1$, observe $a_j(s)$ for all $s < t$, $j \in \mathcal{N}(n)$ and take actions $a_i(t)$ [all simultaneously].
- Let $I_{i,t}$ be the info. of i at time t (formally a σ-alg. on Ω).
- Take a u maximized by reporting $\mathbb{P}(\theta = 1 \mid I_{i,t})$.
- Players play myopic best-response to all predecessors’ strategies.
Can we say anything about agreement with a coarse action space?

If \(i \) takes action \(a \) infinitely often and \(j \) takes action \(a' \neq a \) infinitely often, then it is asymptotically common knowledge between them that \(i \) thinks \(a \) is weakly better while \(j \) thinks \(a' \) is weakly better. I.e.

\[
\mathbb{E}[u(a, \theta) - u(a', \theta) \mid \bar{I}_i] \geq 0 \quad \text{and} \quad \mathbb{E}[u(a, \theta) - u(a', \theta) \mid \bar{I}_j] \leq 0.
\]
Robustness of agreement: Coarse actions

- Can we say anything about agreement with a coarse action space?

- If i takes action a infinitely often and j takes action $a' \neq a$ infinitely often, then it is asymptotically common knowledge between them that i thinks a is weakly better while j thinks a' is weakly better. I.e.

 \[\mathbb{E}[u(a, \theta) - u(a', \theta) | \bar{I}_i] \geq 0 \quad \text{and} \quad \mathbb{E}[u(a, \theta) - u(a', \theta) | \bar{I}_j] \leq 0. \]

- By the Agreeing to Disagree argument, this can only happen if both are equalities. So neighbors have to be indifferent between actions taken infinitely often.
Can we say anything about agreement with a coarse action space?

If \(i \) takes action \(a \) infinitely often and \(j \) takes action \(a' \neq a \) infinitely often, then it is asymptotically common knowledge between them that \(i \) thinks \(a \) is weakly better while \(j \) thinks \(a' \) is weakly better. I.e.

\[
\mathbb{E}[u(a, \theta) - u(a', \theta) \mid \overline{I}_i] \geq 0 \quad \text{and} \quad \mathbb{E}[u(a, \theta) - u(a', \theta) \mid \overline{I}_j] \leq 0.
\]

By the Agreeing to Disagree argument, this can only happen if both are equalities. So neighbors have to be indifferent between actions taken infinitely often.

Might hope it’s nongeneric, but probabilities endogenous.
Robustness of agreement: Coarse actions

- Can we say anything about agreement with a coarse action space?

- If i takes action a infinitely often and j takes action $a' \neq a$ infinitely often, then it is asymptotically common knowledge between them that i thinks a is weakly better while j thinks a' is weakly better. I.e.

$$
\mathbb{E}[u(a, \theta) - u(a', \theta) \mid \bar{I}_i] \geq 0 \quad \text{and} \quad \mathbb{E}[u(a, \theta) - u(a', \theta) \mid \bar{I}_j] \leq 0.
$$

- By the Agreeing to Disagree argument, this can only happen if both are equalities. So neighbors have to be indifferent between actions taken infinitely often.

- Might hope it’s nongeneric, but probabilities endogenous.

nature draws $\theta \in \{0, 1\}$ with $q_0 = \mathbb{P}(\theta = 1)$.

Mr. $n \in \mathbb{N}$ acts at time n

sees I_n:
- signal $s_n \in S$;
- actions of nbhd $\mathcal{N}(n)$; dist \mathbb{Q} is joint of $(\mathcal{N}(n))_n$

makes choice $a_n \in \{0, 1\}$

About signals:
- conditionally i.i.d given θ, $s_n \sim \mathbb{F}_\theta$
- $\mathbb{F}_0 \neq \mathbb{F}_1$.
Recall: sequential social learning model, J_n consists of all actions before n, and $q_n = \mathbb{P}[\theta = 1 \mid J_n]$.

$r_n = \frac{q_n}{1 - q_n}$.

Conditional on $\theta = 0$, $(r_n)_n$ is a martingale.
Sequential social learning using (conditional) martingale

- Recall: sequential social learning model, \(J_n \) consists of all actions before \(n \), and \(q_n = \mathbb{P}[\theta = 1 \mid J_n] \).

- \(r_n = \frac{q_n}{1-q_n} \).

- Conditional on \(\theta = 0 \), \((r_n)_n\) is a martingale.

\[
\frac{q_{n+1}}{1 - q_{n+1}} = \frac{q_n}{1 - q_n} \times \frac{\mathbb{P}[a_n \mid q_n, \theta = 1]}{\mathbb{P}[a_n \mid q_n, \theta = 0]}
\]

\[
\mathbb{E}\left[\frac{q_{n+1}}{1 - q_{n+1}} \mid r_n, \theta = 0\right] = \frac{q_n}{1 - q_n} \times \mathbb{E}\left[\frac{\mathbb{P}[a_n \mid r_n, \theta = 1]}{\mathbb{P}[a_n \mid r_n, \theta = 0]} \mid r_n, \theta = 0\right].
\]
Recall: sequential social learning model, J_n consists of all actions before n, and $q_n = \mathbb{P}[\theta = 1 \mid J_n]$.

$r_n = \frac{q_n}{1-q_n}$.

Conditional on $\theta = 0$, $(r_n)_n$ is a martingale.

$$\frac{q_{n+1}}{1-q_{n+1}} = \frac{q_n}{1-q_n} \times \frac{\mathbb{P}[a_n \mid q_n, \theta = 1]}{\mathbb{P}[a_n \mid q_n, \theta = 0]}$$

$$\mathbb{E} \left[\frac{q_{n+1}}{1-q_{n+1}} \mid r_n, \theta = 0 \right] = \frac{q_n}{1-q_n} \times \mathbb{E} \left[\frac{\mathbb{P}[a_n \mid r_n, \theta = 1]}{\mathbb{P}[a_n \mid r_n, \theta = 0]} \mid r_n, \theta = 0 \right].$$

$$\sum_{a_n} \frac{\mathbb{P}[a_n \mid r_n, \theta = 1]}{\mathbb{P}[a_n \mid \circ]} \mathbb{P}[a_n \mid \circ] = \sum_{a_n} \mathbb{P}[a_n \mid r_n, \theta = 1] = 1$$
Suppose there is a deterministic sequence \((m_k)_{k=1}^{\infty} \) of “candidate sacrificial lambs.”

Their neighborhoods are, independently, empty with some probability \(e_k \), such that \(\sum_k e_k = \infty \).

For each \(k \), for any \(\epsilon \) there is an \(N(\epsilon) \) large enough so that any agent \(n \geq N(\epsilon) \) observes \(m_k \) with probability at least \(1 - \epsilon \).
SSLM setup reminder

- nature draws $\theta \in \{0, 1\}$ with $q_0 = \mathbb{P}(\theta = 1)$.
- Mr. $n \in \mathbb{N}$ acts at time n
- sees I_n:
 - signal $s_n \in S$;
 - actions of nbhd $\mathcal{N}(n)$ -- dist \mathcal{Q} is joint of $(\mathcal{N}(n))_n$
- makes choice $a_n \in \{0, 1\}$

About signals:
- conditionally i.i.d given θ, $s_n \sim \mathbb{F}_\theta$
- $\mathbb{F}_0 \neq \mathbb{F}_1$.

Some definitions:
- J_n consists of all actions before n, dist \mathcal{Q} is joint of $(\mathcal{N}(n))_n$.
- $p_n = \mathbb{P}[\theta = 1 \mid s_n]$.

Let $\underline{\beta}$ be the infimum of support of p_n, and $\overline{\beta}$ be the supremum.
Fact

There is a distribution \tilde{s}, called the expert signal, with support $\{s, \bar{s}\}$ s.t.

$$P(\theta = 1 | \tilde{s} = s) = \beta \quad P(\theta = 1 | \tilde{s} = \bar{s}) = \bar{\beta}$$
Fact

There is a distribution \(\tilde{s} \), called the expert signal, with support \(\{s, \bar{s}\} \) s.t.

\[
\mathbb{P}(\theta = 1 | \tilde{s} = s) = \beta \quad \mathbb{P}(\theta = 1 | \tilde{s} = \bar{s}) = \bar{\beta}
\]

Diffusion occurs in an eqm if

\[
\lim_{n \to \infty} u(a_n, \theta) \geq \text{payoff under expert signal}
\]
Diffusion: A new concept

Fact

There is a distribution \tilde{s}, called the expert signal, with support $\{s, \bar{s}\}$ s.t.

$$P(\theta = 1 | \tilde{s} = s) = \beta \quad P(\theta = 1 | \tilde{s} = \bar{s}) = \overline{\beta}$$

Diffusion occurs in an eqm if

$$\lim_{n \to \infty} u(a_n, \theta) \geq \text{payoff under expert signal}$$

Diffusion occurs under Q if it occurs in every equilibrium, for every signal distribution.
Fact

There is a distribution \(\tilde{s} \), called the expert signal, with support \(\{s, \bar{s}\} \) s.t.

\[
\begin{align*}
P(\theta = 1 | \tilde{s} = s) &= \beta \\
P(\theta = 1 | \tilde{s} = \bar{s}) &= \bar{\beta}
\end{align*}
\]

Diffusion occurs in an eqm if

\[
\lim_{n \to \infty} u(a_n, \theta) \geq \text{payoff under expert signal}
\]

Diffusion occurs under \(Q \) if it occurs in every equilibrium, for every signal distribution.

Two famous notions:

- **herd**: a.s. \((a_n)_n \) converges;
- **information cascade**: a.s. players eventually ignore private information.