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Plan

I Lecture notes at bengolub.net (“Current Teaching”).
I On interactive learning: rough lecture notes.
I On sequential social learning: G and Sadler survey, Section 2.

I Review/cleanup from yesterday:

I Interactive learning agreement with coarse actions.

I On sequential learning, MG property of likelihood ratio
rn = qn

1−qn
.

I Quick reminder of “sacrificial lambs.”

I Main material for today:
I Finishing sequential social learning: idea of diffusion.

I “Social Learning Equilibria,” Manuel-Frank, Mossel, Tamuz,
and Sly (2018).

I Time permitting, begin linear updating models.
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Social learning setting and interactive learning protocol

A social learning setting consists of:

I N – a set of players;

I A – a common action space;

I Θ – state space;

I u : A×Θ→ R – a common utility function;

I S – private signal space;

I µi for each i – i’s prior over Ω = Θ× SN .

Interactive learning protocol:

I At t = 0, get si and take actions ai(0) [all simul.].

I For t ≥ 1, observe aj(s) for all s < t, j ∈ N (n) and take
actions ai(t) [all simultaneously].

I Let Ii,t be the info. of i at time t (formally a σ-alg. on Ω).

I Take a u maximized by reporting P(θ = 1 | Ii,t).

I Players play myopic best-response to all predecessors’
strategies.



Robustness of agreement: Coarse actions

I Can we say anything about agreement with a coarse action
space?

I If i takes action a infinitely often and j takes action a′ 6= a
infinitely often, then it is asymptotically common knowledge
between them that i thinks a is weakly better while j thinks
a′ is weakly better. I.e.

E[u(a, θ)− u(a′, θ) | Ii] ≥ 0 and E[u(a, θ)− u(a′, θ) | Ij ] ≤ 0.

I By the Agreeing to Disagree argument, this can only happen
if both are equalities. So neighbors have to be indifferent
between actions taken infinitely often.

I Might hope it’s nongeneric, but probabilities endogenous.

I Gale and Kariv (2003), Rosenberg, Solan, and Vieille (2011),
Mueller-Frank (2013)
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SSLM setup reminder

I nature draws θ ∈ {0, 1} with q0 = P(θ = 1).

I Mr. n ∈ N acts at time n

I sees In:

I signal sn ∈ S;
I actions of nbhd N (n); dist Q is joint of (N (n))n

I makes choice an ∈ {0, 1}

About signals:

I conditionally i.i.d given θ, sn ∼ Fθ
I F0 6= F1.



Sequential social learning using (conditional) martingale

I Recall: sequential social learning model, Jn consists of all
actions before n, and qn = P[θ = 1 | Jn].

I rn = qn
1−qn .

I Conditional on θ = 0, (rn)n is a martingale.

qn+1

1− qn+1
=

qn
1− qn

× P[an | qn, θ = 1]

P[an | qn, θ = 0]

E
[

qn+1
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]
=
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× E
[
P[an | rn, θ = 1]

P[an | rn, θ = 0]
| rn, θ = 0

]
.

∑
an

P[an | rn, θ = 1]

P[an | ◦]
P[an | ◦] =

∑
an

P[an | rn, θ = 1]= 1
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Sacrifical lambs

I Suppose there is a deterministic sequence (mk)
∞
k=1 of

“candidate sacrificial lambs.”

I Their neighborhoods are, independently, empty with some
probability ek, such that

∑
k ek =∞.

I For each k, for any ε there is an N(ε) large enough so that any
agent n ≥ N(ε) observes mk with probability at least 1− ε.



SSLM setup reminder

I nature draws θ ∈ {0, 1} with q0 = P(θ = 1).
I Mr. n ∈ N acts at time n
I sees In:

I signal sn ∈ S;
I actions of nbhd N (n) – dist Q is joint of (N (n))n

I makes choice an ∈ {0, 1}
About signals:

I conditionally i.i.d given θ, sn ∼ Fθ
I F0 6= F1.

Some definitions:

I Jn consists of all actions before n, dist Q is joint of (N (n))n.

I pn = P[θ = 1 | sn].

Let β be the infimum of support of pn, and β be the supremum.



Diffusion: A new concept

Fact

There is a distribution s̃, called the expert signal, with support
{s, s} s.t.

P(θ = 1 | s̃ = s) = β P(θ = 1 | s̃ = s) = β

Diffusion occurs in an eqm if

lim
n→∞

u(an, θ) ≥ payoff under expert signal

Diffusion occurs under Q if it occurs in every equilibrium, for
every signal distribution.

Two famous notions:

I herd: a.s. (an)n converges;
I information cascade: a.s. players eventually ignore private

information.
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