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Abstract The multidivisional firm is modeled as a system of interconnected nodes
that exchange continuous flows of projects of varying urgency and queue waiting tasks.
The main innovation over existing models is that the rate at which waiting projects
are taken into processing depends positively on both the availability of resources and
the size of the queue, capturing a salient quality of human organizations. A transfer
pricing scheme for decentralizing the system is presented, and conditions are given
to determine which nodes can be operated autonomously. It is shown that a node can
be managed separately from the rest of the system when all of the projects flowing
through it are equally urgent.
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1 Introduction

Since the foundational work of Marschak (1955) and Radner (1959), an active research
program has focused on analyzing the firm as a network of interacting units whose

B. Golub
Graduate School of Business, Stanford University, 518 Memorial Way, Stanford, CA 94305, USA
e-mail: ben.golub@gmail.com

R. P. McAfee (B<)

Yahoo! Research, 3333 Empire Blvd., Burbank, CA 91504, USA
e-mail: preston@mcafee.cc

Published online: 19 September 2009 &\ Springer



B. Golub, R. P. McAfee

operations can be optimized.! This paper continues that program by adding certain
human elements to standard queuing models—in particular, the tendency for some
resources to be idle even when tasks remain undone, and for units to work more
efficiently when they are busier.

The aim of this study is to examine resource allocation and decentralization in mul-
ticomponent enterprises that handle projects of varying urgency. To this end, we model
the firm as a network of interlinked nodes which process tasks and queue pending jobs.
This approach imposes only weak assumptions about the structure of the corporation.
For example, no managerial division is modeled as being outside the structure of pro-
cessing. Every operation is viewed as a node, from assembly lines to legal and human
resources departments.

This work extends the value-chain model described by Porter (1985) and the value
net of Brandenburger and Nalebuff (1996), in which products flow through a process-
ing network. Our insight, which builds on the McAfee (2002) three-layer model, is
that services and administrative activities can be viewed in a similar light as physi-
cal outputs and intermediates—that is, as flows of jobs or tasks within the firm. For
example, production and sale of output generates customer returns, lawsuits, repeat
purchases, and so forth. These tasks generate further tasks—e.g., lawsuits generate
requests for information—which flow around the company. Our major assumption
is that such demands scale linearly. For example, increasing the number of employ-
ees increases demands on the human resources department proportionally. Increasing
sales increases customer returns proportionally. Since tasks are modeled in an abstract
way, the model can accommodate virtually any task repeatedly performed within the
company. Indeed, the only major task which is not modeled is the redesign of the
system itself. Since the primitives in this approach are jobs—i.e., requests for ser-
vice—flowing through a network of business components, the theory is consistent
with on demand, service-oriented, component-based models of the firm which have
recently appeared in the literature (Fisher et al. 1994; Crawford et al. 2005).

The main innovation of this paper concerns the modeling of the rate at which
waiting tasks are taken into processing. In traditional models of queuing networks,
processors are fully occupied, though there may be delays in switching from task to
task (Kleinrock 1975; Takagi 1991). These models are poorly suited to many busi-
ness operations, in which some processing resources may be idle even when there
are remaining tasks. For instance, airplanes are not filled even when some passengers
desire flights on the same route; employees on a team are temporarily idle while some
tasks remain undone; goods sit in inventory while customer orders are slowly filled.
In these cases, the uptake of projects into processing is delayed, not by a fixed interval
of time, but by an amount that depends on both the scale of unused resources and the
magnitude of the queue.

There are many reasons for this; we focus on two stylized facts. First, employees
tend to be faster at moving waiting tasks to available capacity when queues are long
than when they are short. That is, workers tend to take fewer coffee breaks when
they are busy. Second, uptake of tasks in human organizations depends on matching

I See Marschak and Radner (1972) for a detailed review of the development of this literature.
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them to appropriate resources, which is faster when there are more unoccupied pro-
cessors checking for new assignments. An innovation of our approach over existing
queuing models which have been used to study economic problems is that it captures
these features of human uptake. Consequently, we are able to model the dependence
of unused capacity on system demand and investigate the impact of this on transfer
prices, decentralization, and other economically relevant questions. Throughout, our
analysis focuses on the expectations of the variables involved (such as inflow rates,
process sizes, and queue sizes) and thus we work with deterministic variables and
abstract from the stochastic nature of arrivals.

The analysis of the model proceeds as follows. In Sect. 2, we examine the steady
state configuration of the network and obtain stability results under the variable uptake
hypothesis. It is shown that the system has a unique, locally stable steady state. We
then consider the problem of resource allocation. Value is determined by the speed
of task completion moderated by the importance, or urgency, of the task. This is
modeled as follows: the firm is paid per completed project, minus a penalty that is
proportional to the amount of time taken to complete the project. The constant of
proportionality depends on where the project originates and is higher for more urgent
projects. The corporation trades off capacity costs against queuing and delay costs.
Increasing capacities is expensive, but it also shortens queues and allows projects
to be processed faster, reducing the time-penalties. The goal of the firm is to man-
age this trade-off so as to maximize expected profit. In Sect. 3, it is shown that there
is a unique set of profit-maximizing capacities, which are characterized with a for-
mula. The formula depends in a straightforward way on urgency variables and global
flows.

Next, we ask whether optimal capacities can be set, not via a top-down command
system, but through a budget-balanced transfer mechanism in which individual, profit-
maximizing nodes choose capacities and trade in the same way that the firm as a whole
trades with the outside world. In Sect.4, it is shown that this can be done. Unfortu-
nately, there are situations in which the transfer prices at a particular node depend on
what happens elsewhere in the system. Thus, some nodes must be managed together.
Nevertheless, we show in Sect. 5 that if all the projects which flow through a node are
equally urgent, then the transfer prices it faces depend only on local information, and
hence the node may be managed autonomously. We note that there is a way of looking
at this fact from the perspective of system design. If one wants to have nodes managed
locally and autonomously, flows of projects should be divided by urgency, with each
flow having its own dedicated nodes.

The importance of these results is that aggregation of several nodes under the same
management is needed only if the situation is fairly complicated: certain components
must handle projects of different urgencies. Business divisions consisting of multiple
nodes may then be viewed as mechanisms for managing this complexity. It follows
that managing multiple urgencies or priorities is a more difficult organizational task
than managing similar priority tasks, as the latter type of management can be decen-
tralized.

Finally, the analysis is applied to the problem of forecasting how changes in
demands and prices affect optimal capacities and how quickly the firm should be
prepared to react to such changes.
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1.1 Related literature

We view the insights of this paper as complementary to several recent papers. Since
Radner (1993), many studies have focused on how to design organizations which pro-
cess general flows, such as flows of information or tasks requiring special skills or
knowledge. Beggs (2001) considers a queuing model of task flow in an organization
which is assumed to be organized hierarchically. Abstracting from incentive problems,
this study derives optimal organizational structures and distributions of activities. We
believe these insights are valuable, especially in organizing individual business units,
where the particles in the model are people (who report to superiors in a traditional
hierarchy). This model seems less applicable to the more complex organizational struc-
ture of modern, multicomponent corporations; here, relationships between different
units are characterized by many interdependencies, and no clear top-down structure
can be assumed. Thus, our paper is complementary to Beggs (2001) in that it considers
optimal interaction on a larger scale.

Another related paper is Arenas et al. (2006). The corporation is modeled as an
arbitrary network of interconnected nodes. Problems arrive from outside the network;
each problem can be solved at exactly one node and must be routed there. The aim of
the paper is to derive optimal network structures when delays are costly. Like Beggs
(2001), this study abstracts from incentive problems, but, in contrast, it allows much
more complex network relationships.

The focus of our paper is somewhat different. We do not assume that the corporation
has only one stylized goal (such as routing a problem to a single solver, as above) in
order to solve a system design problem. Instead, we start with a richer and more mul-
tifaceted notion of processing. The same project may need to go through many nodes
before being discharged, and each node may need to do something to it. To capture
this, we take the structure of processing as given. This seems reasonable since there is
such a large variety of possible processing systems; the routing of projects or demands
is often determined by technological constraints. While endogenizing these would be
very interesting, it would depend heavily on the specific application considered, so we
abstract away from these issues.

Taking the structure of processing as given permits us to consider in some depth the
incentive, internal pricing, and management problems which are not analyzed in the
papers discussed above. In particular, we take up the problem of transfer prices from a
new perspective. Much of the work to date in this field, initiated by Hirshleifer (1956)
has focused on the interaction between just two components of a firm.> We broaden
the analysis to allow a much more complex network structure of interaction. The same
is done in Adelman (2009), in which a transfer pricing system for a complex queuing
network is developed. The difference between that paper and ours is that, by allowing
rates of uptake to be smooth functions of available capacity and queue size, we greatly
simplify the analysis and can more explicitly characterize many relationships in the
system and their dependence on the primitives.

2 See e.g., Holmstrom and Tirole (1991), Alles and Datar (1998), and Baldenius et al. (1999).
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Finally, there are connections to the queuing literature. A very general model which
allows for idle processors when projects are queued up is outlined in Kelly (1987,
Chap. 3). Our paper extends that work by applying a tractable version of such a model
to specific economic problems—especially those of transfer pricing and decentraliza-
tion. There has also been work on optimal internal pricing for a single service facility
(Dewan and Mendelson 1990; Ha 1998). This paper embeds the service centers in a
network, allowing the study of more complex enterprises while focusing less on the
details of individual queues.

2 The basic model

The model used is a variant of a common queuing model. There are N processing
units, called nodes, whose indices compose the set V := {1, ..., N}. The nodes pro-
cess projects, an abstract name for whatever objects or tasks move through the system
of nodes. In particular instances, these projects may be computers undergoing assem-
bly, airline customers, administrative assignments in an office, etc. Node n has p,
projects in processing, g, projects in its queue, and a capacity c,, which is the largest
number of projects that can be in processing simultaneously. Jobs are modeled con-
tinuously and flow through the system as a “fluid”, an approach which has been used
elsewhere in the queuing literature (Bramson 1996).

Certain nodes can accept projects from outside the system; this may be interpreted
as taking customer orders, receiving regulatory requests for information, and so on.
Let the set R € V contain exactly those nodes which can accept inflows of projects,
and call these the receiving nodes. The remaining nodes are called internal. Let r,, be
the number of projects per unit time which enter the system at node n. If n ¢ R, then
r, = 0. Otherwise, r,, is nonnegative and is treated as a constant until Sect. 6.

Nodes can also send projects to other nodes. Let T, be the rate at which pro-
jects in processing at node n spawn projects at node m. This rate may be zero or
positive, and varies only in the long run for the purposes of this model. We will
assume throughout that 7,,, = 0 to simplify some later expressions, though allowing
the nonzero case does not change any of the results substantially. A positive value
of T, means that some projects are suspended and placed back in node n’s queue.
Note also that under this model, a single project at node n can simultaneously spawn
multiple projects at many other nodes (because >, T, can exceed 1). For instance,
a single lawsuit causes production of multiple documents throughout the entire cor-
poration.

We emphasize that, in our view, it is best to interpret the inflows in this model as
demands or assignments—from customers, partners, regulators, litigants, and other
external entities—which drive further tasks in the firm and may generate revenue.
This interpretation is distinct from the understanding of inflows in a traditional supply
chain, where they are simply raw materials. In our model, raw materials would be
procured after the initialization of a project by sending orders to other nodes.

In addition to transferring projects to other parts of the system, each node also
terminates, or discharges, a certain fraction of its projects, causing them to exit
the system. Let d,, denote the fraction of projects in processing at node n that are
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Fig. 1 A queuing network model. Queues are represented by circles, processors by squares. When there
is no flow from one node to another, we assume the link between them in that direction does not exist

discharged per unit of time. Assume that d,, > 0 for each n. This will later guarantee
that inflow does not accumulate in the system without bound. An example of the model
is illustrated in Fig. 1.

This is a standard model of queuing so far.> What is unusual about the model is the
transfer from queue to processing. In particular, this takes place at a rate that depends
on the size of the queue g, and the excess capacity ¢, — py; the rate of transfer flow is

qn(Cn — pn)
angn + by(cn — pn) '

where a, and b, are two positive constants.

This rate can be derived from the following two-stage description of the transfer
mechanism. The first step is a preparation process that is required to go into process-
ing: for instance, a customer being issued a ticket by an airline, a manager approving
a programming project, or a shipping clerk signing off on a shipment. A tendency of
human organizations is to become faster and more efficient at moving waiting pro-
jects to available capacity when lines are longer. At busy times, ticket agents work
more quickly, appointments are scheduled more tightly, and so forth. We assume that
the length of the preprocessing lag per project varies inversely with the length of the
queue, i.e., it is equal to b, /q,, where b, is some constant.* After this, processing
occurs as soon as the appropriate type of service becomes available. For instance, a
package being shipped remains in storage until the next pickup occurs; a customer
referred to a particular kind of technical support technician must wait until the next
one becomes available, etc. There are ¢,, — p,, available servers. Assume they check for
new projects at intervals having some distribution with mean a,, (the accommodation

3 The network of processing nodes, each having its own queue, is standard in the queuing literature: see, for
example, Kleinrock (1975, 147-160), Lemoine (1977, 466—467), or Bose (2001, 143—150). In each version
of the standard model, a fixed transfer proportion is associated to each ordered pair of nodes; this number
describes what fraction of projects in processing at the first node is transferred to the second per unit of
time. In some cases, these transfer proportions are described as transfer probabilities instead, but this does
not significantly alter the model. In all of the models mentioned above, the processor is assumed to be fully
occupied, which makes the rate of uptake from the queue discontinuous.

4 One explanation for this form is as follows: individual employees work under limited time horizons; for
instance, their goal is to empty the projects that are queued up in the morning by the day’s end, or face a
costly reprimand by supervisors. Then, if the queue increases by a factor of k, it is necessary to reduce the
preprocessing lag by a factor of k to achieve this goal.
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delay). Then, by Little’s Law (Little 1961), the average waiting time is a,, / (¢, — pn).
Summing the delays and inverting to obtain the flow suffices to give the rate above,
which is, of course, always less than the smaller of the preprocessing rate g, /b, and
the accommodation rate (¢, — p,)/a,. In contrast to many other queuing models, it
is smoothly differentiable in both endogenous variables g, and p,,.

The transfer from queue to processing contrasts with existing models in which
processors are fully occupied (Chandy et al. 1975; Lemoine 1977; Bitran and Dasu
1992; Bose 2001). Here, the uptake of projects into processing increases with available
resources—excess capacity accelerates the movement of projects into processing, as
do increases in queue size. Moreover, there is a real distinction between projects in
processing and in queue. In contrast, models in which the processor is always fully
occupied present no real distinction between being in processing and being in queue.
In our view, excess processing capacity even when the queue is not empty is a char-
acteristic of humans, but not of computer processors, so the model is a better model
of firms (which is the intended application) than of machine networks.

The description of processing entails rates of change in the endogenous variables of

N
. qn(Cn — Pn)
Pn = —dnpn — p Tom + , and (H
§ e " mZ::1 " anqn + by (cn — pn)
J qn(Cn — Pn)
Gn=rn+ D Tanpm — —— —————. @)
! ! mz::l e angn + by(cn — pn)

The flow into p, consists exclusively of projects in the queue of node n, and by
hypothesis this flow is the positive term in (1). The flow out, again by assumption,
is proportional to p,; per unit of time, the fraction d, of the amount p, leaves the
system, and the fraction 7y, flows to the queue m. Similarly, projects from outside
the system arrive into queue n at a rate r,,. The rest of the expression for g, is just the
flow from within the system, determined by consistency with the processor equations.

2.1 Steady state analysis

We define a steady state to be a specification, for each node, of a nonnegative process
size (not greater than the capacity there) and nonnegative queue size so that the deriv-
atives (1) and (2) are both zero.

Observe that the total rate of change in the number of projects at node 7 is

N N
Pn +qn:rn+ZTmnpm_ nPn — Pn Tom.

m=1 m=1
Thus, in the steady state, when p, = ¢, = 0, we have
N N
P;’; (dn + Z Tnm) =1In+ Z Tmnp,jp 3)
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where p is the steady state process size at node . For each node n, define a constant
Un =d, + ZZZI Ty - This shorthand transforms (3) into

N
an;,kzr:1+sznP:1' “4)

m=1

The quantity u, can be interpreted as the total rate of outflow from node » divided by
the number of projects at node n. Defining M as the N x N diagonal matrix with
in the (n, n) position for each n, the previous equation becomes>

(M - TT) P =r. (5)

As the proof of Theorem 1 will show, the matrix M — TT is invertible, and the inverse
has nonnegative entries, which gives a nonnegative solution for the steady state process
sizes:

p = (M- TT)_1 r (©6)

We will assume, without loss of generality, that p; # 0 for each n; any nodes failing
this condition may simply be neglected in the analysis, since they do not have any
effect on the system.

An important simplification is embodied in this expression: the steady state process-
ing levels are independent of the capacities, assuming the capacities are large enough
for a steady state to exist at all. This may seem peculiar but is actually quite sensible.
In the steady state, the inflow must equal the outflow at each node, and these are not
affected by the capacities. If the capacities are less than the steady state process size
values, then no steady state exists.

Note also that the matrix in (6) contains interpretable information about the sys-
tem. Write S := (M - TT) ! for brevity and let the entry of this matrix in the (n, m)
position be denoted, as usual, S;,,,,. Then (6) entails that Sy, = dp)/0ry,, i.e., the con-
stant rate of change of the nth process size with respect to mth inflow. Additionally,
we will define the elasticity of the nth process size with respect to the mth inflow as

€Enm =

*
'm 3Pn _ T Snm
* *
pn 8Vm pn

The elasticity will prove to be important in characterizing optimal capacities and
transfer prices.

5 Givenan N x N matrix X, we denote the entry in the (i, j) position by X;;. Conversely, given an indexed

set of N2 values {Xij}1<i,j<n, we denote by X the N x N matrix with X;; in the (i, j) position. The
notation is analogous for vectors, but only one index is used.
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The steady state queue sizes gy, .. .q, can be readily determined using

4, (cn — py)
anq;zk + by (cp — P,f) )

N
OZ‘?ann‘i‘ZTmnP;;_

m=1

Using (4), this can be rewritten as

« _ bopnpy(cn — py)
Cn — P;’Z(l + appin)

(N

Theorem 1 There is a steady state if and only if ¢, > p;; (1 + a,u,) for each n. If so,
the steady state occurs uniquely at process sizes p* and queue sizes q* and is locally
stable.

All proofs can be found in the Appendix. We will denote by D the set of N-tuples of
capacities which satisfy the condition stated in the theorem, i.e., those which corre-
spond to steady state configurations.

Our analysis in the remainder of the paper is in steady state (an assumption which
we will, for brevity, not state explicitly in every result). In this, we follow the standard
approach used in, e.g., Beggs (2001) and Arenas et al. (2006). Since the steady state
is locally stable, we can expect it to persist once established, and so the system will
spend a large fraction of the time in this regime. This justifies the attention the steady
state receives in our analysis.

Taking the partial derivative of g, with respect to the capacity c, shows that steady
state queue size is a strictly decreasing function of capacity if the steady state condition
given in the theorem is met.

Throughout the paper, we will be interested in the question of which aspects of the
corporation’s operations can be managed locally—that is, when the optimal values of
choice variables pertaining to node n can be computed using only variables labeled
n and constants. Of course, what is a variable and what is a constant is a matter of
definition. We take the inflows, process sizes, queue sizes, uptake parameters, and
capacities to be variables, viewing them as quantities that can be adjusted in the short
run. Other quantities, such as the network structure parameters 7,,,,, are taken to be
constants in our analysis. This, of course, does not mean that they do not change, but
that we do not endogenize their variation in this model.

In this vein, it is interesting to note that the expression for the minimal required
capacity is purely local as long as the steady state process size p;: is known. In a stable
system, this steady state process size can be directly observed. From this point, one
only needs the product a, i, at node n in order to compute the minimal capacity near
which the queue at n becomes huge and the steady state of the entire system breaks
down. The relatively modest number of inputs for this calculation is convenient in
situations where capacity must be quickly reduced (perhaps due to an emergency or
an unexpected increase in costs). An operator of a node—even one with information
about only that node—can determine completely locally and fairly simply how low
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T

#7
i Quality
30 projects/ Assurance
hour #2
“:> Customer
Service i .
30
#3 #5
o . Staging Assembly
S50 projects/ 90
hour #1 65

Order
“:> Taking

ﬂ i Parts A

Fig. 2 A particular network which will be used to illustrate the analysis. This example corresponds to a
simple version of a build-on-demand firm producing computers, which serves individual consumers. Arrow
labels without units are the proportions of projects at the originating node flowing out per unit of time (here,
the time units are hours)

) inflow
:> discharge

—  transfer

the capacity can get without destroying the equilibrium for the entire system. More
details on estimation procedures are in Sect. 7.

Example In Fig.2, we present a particular example of a network which will be used
to illustrate the analysis. The example represents a simple version of a firm that builds
customized computers on demand and then provides customer service for those who
buy them. The projects in this context are customer requests: either for new computers
or for service on existing ones.

There are two receiving nodes, Order Taking and Customer Service. The former
receives orders for new computers and the latter takes requests for repairs and other
assistance. Of the projects that come through Customer Service, 5% are mistakes, and
are actually intended for Order Taking. Similarly, 5% of the projects going through
Order Taking per unit time are properly routed to the Customer Service department.
Additionally, 5% of customers in processing at Order Taking decide not to buy and
are discharged.

Customer Service discharges 65% of its projects after handling them. Another 30%
of projects per unit time are routed to the Staging department, which performs more
extensive service, as discussed below.

The projects arriving at Order Taking which are not misrouted Customer Service
requests go to Staging (where they join Customer Service requests that require repairs).
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Staging orders components from two Parts Procurement nodes, which fulfill the orders
and route the projects to Assembly. Per unit time, 34% of the projects in staging go to
Node 5, and 65% go to Node 4. Finally, Assembly sends projects to Quality Assurance.
There, 97% of them are discharged, and 3% of computers are defective and are sent
back to Staging for repair.

For technical reasons, all nodes that are not explicitly shown discharging projects
nevertheless discharge 1% of their projects per unit time (which corresponds to projects
being cancelled at some intermediate point with small probability).

The transfer matrix associated to the firm is

0.05 090 O
5 0 030 O
0 0 03
0 0 0
0 0 0
0 0
0 0

0
0 0
4 065 O
9
9

0 O
0

0.9
0.9
0
0.03

0
.0
0

T= 0
0
0 9
0

0
0
.6
0
0
0
0

coococococo

The inflows are r1 = 50, r» = 30, with the rest set to zero. The discharge rates are
d = (.05,.65 ¢ ¢¢¢ 9NT,

where € = .01 is a small parameter which is nonzero for technical reasons as noted
above. Using (6), we compute

p* = (52,33, 58, 20, 38, 57, 56)".

These are the steady state process sizes.
We will return to this example again.

2.2 Completion times

While the number of projects in processing is invariant to capacity in the steady state,
the size of the queue is not—increases in capacity reduce queue length and hence
reduce the time to completion. Let #, be the average total amount of time neces-
sary to process a project that enters at node n, and let the column vector of all these
values be denoted t. In steady state, g, = 0 means that the outflow of queue 7 is
rn + ZZ: 1 Tun Py, = tnp;, where the last equality follows by (4). The amount of
time a project spends in queue n is the size of the queue divided by the outflow, that
is,

q}f _ by (cn — P;lk)
tapy  en = py(l+anin)’
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which is obtained using (7). The amount of time a project spends in processing at node
nis

®)

1 |: by (cp — P;;) + 1:| )
Mn

n Cn — P;f(l + anftn)

When processing is finished, a given project may be sent to where its processing time
is assumed to be independent of what happened to it previously.

At this point we will make the assumption, to be maintained from this point forward,
that the total rate of outflow per unit time at any node does not exceed the number of
units in processing—that is, i, < 1. This places some substantive restrictions on the
processing structure. The model could also be solved without this assumption, but the
formulas for completion times that we are about to derive would be more complex.

In view of the assumption, the contribution to the average total time associated with
the projects sent to node m is t,,, multiplied by the probability that a random project is
sent there conditional on exiting, namely 7}, /. This gives a recursive equation for
the amount of time required to process a project:

N

1 * T,
o= (Ge) - 2
,un pn m=1 H’n
1 bppn(cn — py) Mo
:_|: 11n>i< n n +1:|+Z nmtm' )
Un LCn — Pn(l + anttn) f— Mn

Define the column vector z so that, for each n,

b I
2, = nin (Cn Pn) +1
Cn — P,f(l + anftn)

Then equation (9) assumes the matrix form
M-Tt=z.

By the proof of Theorem 1, (M — TT)~! is invertible and has strictly nonnegative
entries. Note that (M — TT)~! = [M —T)T]”" = [(M —T)~!]T. Taking trans-
poses, (M — T)_1 also exists and has nonnegative entries. Thus, there is a well-defined,
nonnegative solution for the completion times, given by

t=M-T)"'z (10)
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We note a simple consequence of the formulas that is relevant when considering
a merger of two organizations with the same processing structure (i.e., the same T).
Since steady-state process sizes are linear in inflows and z,, is strictly concave in p,
such a merger will always result in weak economies of scale; it will result in strict
economies of scale if the ratios of process size to capacity in the constituent firms are
unequal at any node, as can be verified by a direct computation. This is a quite general
fact about queuing models. Intuitively, it holds because it is possible for one processor
to be free while the other is occupied; merging analogous units utilizes capacity more
efficiently.

3 Optimal capacities

The objective of the corporation is to maximize the average profit accumulated per
unit of time. Revenues consist of payments for the completion of projects that are
ordered at each node; the price paid to the corporation for projects that originate at
node k is pi per project. Costs are of three types. The first two are costs of capacity
and of queues; we assume capacity at node k has a constant marginal cost w; > 0, and
the queue has a constant marginal cost %, both in units of money per project per unit
of time. The third type of cost arises from delays in project completion. Assume that
if a project originating at node k takes 6 units of time to complete, the corporation
pays a time premium f;(6x), in units of money per project. This description entails
the following profit function for the firm:

N
T = Z [orrk — orer — vig — rkE(fe61)] - (11)
k=1

When inflows and transfer rates are fixed, the only endogenous variables in the profit
function are capacity, queue size, and time to completion, so the profit may be maxi-
mized by choosing the capacities ¢ to minimize the variable cost

N

K(©) = D [orck + viqi + rB(fi(00)]. (12)
k=1

In this model, the cost of delays is linear in their length. This is relevant in the
short and medium run, when immediate factors, as opposed to long term discounting,
impose the most significant costs. For example, machines elsewhere sit idle while
the firm produces a custom-made input or component, imposing on the corpora-
tion a per-day opportunity cost arising from the foregone output. Clients requiring a
particular product must rent the next best alternative until the product is delivered.
To the first order, we model these costs as a linear function of the delay time, so that
Jfx(6x) = Biby for a constant By, which we call the urgency of projects originating at

6 We are grateful to two anonymous referees for pointing out to us this simplification of our earlier argu-
ments.
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node k (or the urgency at node k for short). Then, given any distribution on completion
times with mean #;, we have E( fi (0r)) = Brtx.

The main result of this section entails that the optimization problem facing the firm
always has a unique solution with an interpretable characterization.

Lemma 1 The global minimum of the total cost K as a function of the capacities ¢
over the domain D of possible steady-state configurations occurs uniquely at a vector
of capacities ¢*, which can be calculated explicitly from the primitives of the system.
These capacities are

1/2

N
anb, p*
k= pp(L+ anpn) + i %(me Snkﬂkrk) (K]
" k=1

Note that the cost-minimizing set of capacities explicitly exceeds the corresponding
minimal steady state capacity as characterized in Theorem 1.

Rewriting the formula for the optimal capacities ¢* in (13) yields an interpretable
version of the condition for optimality. Using the fact that S, = dp;/dr and equation
(7) we find that the capacities are optimal exactly when, for each n,

N
a
wy = b_n : (q;f:)2 : (Vn + ankﬂk)~
n

k=1

That is, optimal capacities occur when, at each node n, the marginal cost of capacity is
equated to the product on the right hand side. The first factor of this product is the ratio
of accommodation delay to preprocessing delay—or, if the two-stage interpretation
from Sect.2 does not apply, merely a constant parameter pertaining to node n. The
second factor is the queue size squared. The third factor is the marginal cost of the
queue at node n plus the elasticity-weighted sum of the urgencies at all the receiving
nodes. This is an attractive equation because its components are readily estimated,
especially with the aid of enterprise resource planning software. Further discussion of
estimation procedures can be found in Sect. 7.

The lemma entails that the optimal capacity at a given node does not depend on
others’ actual capacities. This has two convenient consequences. First, there are no
complications arising from the fact that all the nodes are adjusting capacities simul-
taneously. Second, even if some nodes are constrained to be operating away from the
optimum, the optimal behavior of the rest of the nodes does not change. In particular,
the transfer prices that we use to decentralize the system in Sect. 5, and which induce
the nodes to operate at the capacities derived above, will allow the system to achieve
the second-best outcome in this constrained situation.

Example We continue the example introduced in Sect. 2. First, we specify the uptake
parameters a and b, as well as costs. After discussing what these quantities mean in
the context of the example, we use them to calculate optimal capacities.

We set a and b as shown in Table 1. Recall that g,, is the time it takes takes a typical
server at node n to check for a new project. This time is short for Order Taking and
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Table 1 The accommodation

and preprocessing delays Node Accommodation Preprocessing
delay, a delay, b
Order taking 0.01 0.01
Customer service 0.01 2
Staging 0.10 0.01
Parts A 0.10 0.01
Parts B 0.10 0.01
Assembly 0.15 5
Quality assurance 0.15 5
:‘Sglifnzg c’(l;ilti capacity and Node Capacity cost, @ Queuing cost, y
Order taking 1 1000
Customer service 10 1000
Staging 20 0.1
Parts A 20 0.1
Parts B 20 0.1
Assembly 50 0.1
Quality assurance 35 0.1

Customer Service (under a minute), and 6 min at Staging and Parts Procurement. It
is longer at Assembly and Quality Assurance—specialized workers check for new
assignments about every 10 min when idle.

The parameters b,, correspond to preprocessing delay. When b,, is nonnegligible,
we set it so that the average preprocessing delay when the queue is on the order
of 100 projects is on the order of minutes. Preprocessing is fairly fast at Customer
Service (a little over a minute per project when there are 100 projects queued). It
is longer at Assembly and Quality Assurance (3 min per project when 100 projects
are queued). Preprocessing is essentially instantaneous at Order Taking, Staging, and
Parts Procurement, where it is automated.

We briefly discuss what preprocessing means in the context of the nodes in this
example. At Customer Service, it consists of identifying the type of problem a cus-
tomer is having and routing the customer to a specialist on that kind of problem within
the Customer Service node. At Assembly, preprocessing consists of reviewing the cus-
tomer’s order to verify that it makes sense and assigning it to an appropriate assembly
location. At Quality Assurance, preprocessing consists of moving a computer to an
expert who will test it.

Next, we define the revenues per project. Set p; = 1500 and pp = 0. That is,
customers pay $1500 for the average new computer, and customer service is free.
Urgencies are 81 = 2 and 8, = 3—it costs the corporation $48 per day in lost future
business to delay a computer delivery and $72 per day to delay a customer service
request.

The costs of capacity and queuing are set as shown in Table 2. The entries of the
vector w are the hourly costs of employing one sever at each node. A computer which
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Fig. 3 The process sizes and optimal capacities in the example

Table 3 The process sizes, optimal capacities, and queue sizes in the example

Node Steady state Optimal capacity Percentage of Steady state queue
process size capacity
unused (%)
Order taking 52 68 24 1
Customer service 33 79 59 66
Staging 58 64 10 6
Parts A 20 22 10 2
Parts B 38 41 10 4
Assembly 57 67 25 514
Quality assurance 56 77 27 472

takes orders costs $1 per hour per project, whereas a skilled assembly worker has
wages of $50 per hour.

The queuing costs y; and y, correspond to the costs in dollars (per project per hour)
of keeping customers waiting in queues at Order Taking and Customer Service. We
posit that keeping a customer waiting on the telephone for a fraction x of an hour
will result in $1000x lost future profits for the firm. The other queuing costs are quite
low, corresponding to the cost (per project per hour) of maintaining warehouses where
partially assembled computers wait. Note that queuing costs can be of two types—
opportunity costs to the firm of making customers wait in a particular line, or physical
maintenance costs when queues are just warehoused merchandise. The reason that the
first type of cost is not included in the urgency parameters is that it is not a cost of
delaying project completion, but the cost of making a customer wait in a particular
queue. That is, a customer may not mind if the project takes 3 days to finish and ship,
but may object to being put on hold on the telephone for 30 min.

We can now compute ¢* using (13). The steady state process sizes (computed in
Sect. 2) and capacities are plotted in Fig. 3 and recorded in Table 3, along with the
queue sizes.

Note that the capacities can be significantly larger than the process sizes at the same
nodes. This may seem odd in light of the fact that capacity is often quite expensive. The
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explanation is that idle processors do not check for new projects instantly. To avoid
bottlenecks, there must be enough available processors at any given time to ensure a
sufficiently high rate of uptake from the queue.

Finally, we note that the system in this example is amenable to a simple rule of
thumb. Suppose that the percent excess capacity is held equal at all nodes: that is, the
ratio ¢,/ p, is constrained to be the same for all n. Optimizing numerically over this
ratio, we find that profit is maximized when each node has 40% of its capacity unused
at any given moment. The variable cost per day—a quantity we denoted by K (¢) in
the proof of Lemma 1—is then only 2.0% higher than what it is when all capacities
are exactly optimal.

We will return to this example again.

4 Transfer prices

The modern corporation is an aggregation of semi-autonomous business units, which
trade with each other as well as with the outside world. The problem of transfer pric-
ing is to identify prices for the internal node-to-node transactions so that the decisions
made by the business units are efficient. In the context of the present model, we ask
when a balanced transfer pricing scheme exists so that each node, if operated as an
autonomous, profit-maximizing business unit, chooses efficient capacities. By a bal-
anced scheme, we mean a mechanism such that if node m pays an amount « for some
task performed by node n, then node n receives «, without any corporate division
absorbing surpluses or compensating for shortfalls. It turns out that such a pricing sys-
tem always exists, and, surprisingly, the transfer prices are independent of the uptake
parameters at the individual nodes.

Let node m pay node n a price A, per project sent from node m to node n, minus
a penalty for delays at node n in processing the assignment. This penalty accumulates
at the rate y, per unit of time per project, which we will call the internal price of
time at node n. Node n pays for its own capacity and queue. Moreover, it receives
the price p, per project that enters at node n from the outside, minus the cost of the
delay to the corporation: namely, 8,6, for a project that takes 6, to exit the system
entirely. Since the mean time to completion for such projects is #,, the expected time
premium is B,1, per project. For the purpose of discussing internal transfer prices at
node n, we can clearly assume that there is some m such that 7,,,, # 0. If not, then no
internal transfer prices are needed at node n, since it receives no inflow from within
the system.

Each node is assumed to maximize the expected local profit per unit of time. The
description above entails that this profit is

N
Tn = Pntn — Bntntn — WnCy — an;: + Z ()WnnTmnp; - XnTnTmnp;;,)

m=1

N
- Z ()\annmp; - Xm'CanmpZ) . (14)

m=1
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Since node n has control only over the capacity c,, maximizing 7, is equivalent to
minimizing the sum of the costs at node n that depend on ¢,, which we will call K,,.
Note that

N
Ky (cp) = wpey + Vn‘];;k + Burntn + Z XnTnTmnp;:z

m=1

= wpCp + anrT + Burntn + Xn (an;: - rn) Tn, (15)

where we have used the fact that 7,,,, = 0 and (4). )

Optimal internal prices of time ¥, would equate the capacity ¢, which minimizes
the local cost K, (if such a capacity exists) to ¢}, the capacity at node n in the solu-
tion to the global cost minimization problem, which we found in Sect. 3. It turns out
that there is indeed a unique capacity CZ which minimizes local cost, and there are
prices that make it equal to the globally optimal capacity c};. This is the content of the
following result.

Theorem 2 Globally optimal capacities are locally optimal if and only if

Zk;&n €ni Br

L —=rn/(pn pyy) (10

X n

These prices create a balanced transfer mechanism within the corporation.

The formula for the prices on time immediately yields the following.

Corollary 1 The prices on time which induce optimal capacity choice are always
invariant to the uptake parameters a and b, as well as to all the capacities.

As a consequence, individual operators can restore optimal capacities in response to
changes in uptake speeds at their nodes without any outside interference, and upper
management can ignore uptake rates altogether. This is felicitous because it corrobo-
rates a commonly cited reason for granting autonomy to managers of business units:
their ability to deal independently and efficiently with local adjustments.

The formula in Theorem 2 for the optimal internal price of time at node » is inter-
pretable. The numerator of the right hand side of (16) is the elasticity-weighted sum
of the urgencies at nodes other than n. To interpret the denominator, recall from (4)
that u, p; is the total rate of flow through node n, so that r,,/(w, p;;) is the fraction
of inflow that enters node n from outside the system. Therefore, the denominator is
simply the fraction of inflow coming into node n from inside the system.

The quantities involved in the formula for transfer prices are often quite accessible.
Elasticities and urgencies are observable, especially using enterprise resource planning
software, as is the fraction of tasks coming into a certain node from inside the system.
Thus, the transfer prices are a particularly implementable result of this analysis.

On the other hand, it is important to note that these quantities must be observed
near steady state, and should be available to the authority setting the transfer prices.
While this is often possible, it is a drawback of the mechanism described here if the
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optimal transfer prices depend on many local variables.” In the next section, we con-
sider the case where setting the prices requires minimal information to be available to
the central authority.

5 Decentralization

In this section, we will be working in the regime of the short or medium term, in
which the transfer rates T and urgencies remain fixed, but the inflows r can vary. At
any given node, the optimal transfer prices obtained above depend on the entire vector
r of inputs. Consequently, the setting and updating of transfer prices cannot generally
be accomplished locally, but instead depends on global information. In this section,
we consider when the transfer prices facing a particular node depend only on local
information. In such cases, we will say that the node can be managed locally.

Another definition will help to streamline the statement of a sufficient condition
for decentralization. We say node m influences node n if dp;; /0r,, = Sy # 0, i.e., if
changes in the inflow at n affect the process size at m. There is an easy way to decide
whether one node influences another.

Lemma 2 Node m influences node n (such that n # m) if and only if there is a
sequence of nodes

n|y=m,ny,N3,..., g =N
suchthat Ty ;p;,, > 0forall 1 < j < {. That is, node m influences node n if and only

if, in the weighted directed graph corresponding to T, there is a directed path with
positive edge weights from node m to node n.

We can now state the main result:

Theorem 3 A node can be managed locally if all the receiving nodes that influence
it have the same urgency.

If all the receiving nodes which influence node n have the urgency En, then the
proof of the theorem shows that

B — €unBau

Xn = ————
YT =/ (anp)

If, moreover, node n is internal, so that r, = 0, it follows that €,,, = 0 and the above
expression takes on the particularly simple form y, = En That is, the internal price
of time at an internal node is just the urgency at the nodes that influence it.

This suggests that when the internal price of time at node n differs from the urgency
of the nodes that influence it, the difference exists to account for the additional incen-
tives due to the projects entering node n from outside the system. In particular, recall

7 For a detailed treatment of incentive compatibility as it relates to the transfer pricing problem, see Groves
and Loeb (1979).
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that when a project enters the system at node n, the node gets paid for the completed
project, minus a penalty that depends on how long the project takes to exit the system
entirely. This penalty provides an incentive for node n to reduce its own contribution to
the total time. This external incentive to work faster, arising from the penalty charged
by the outside customer, reduces the infernal time costs which must be imposed to get
the node to work at the correct speed.

More broadly, these results yield insights about aggregating multiple nodes into
business divisions. In particular, Theorem 3 shows that such aggregation is needed
only if inflows of projects with different urgencies influence the same node—that is,
if a single supply chain handles tasks of varying urgency. In this case, managing many
nodes together may be necessary, because this allows the operator to adjust the price
of time at each node in response to changes elsewhere throughout the system. On the
other hand, when all the receiving nodes that influence a given node have the same
urgency, all the information needed to set the internal price of time is transmitted
through the local process size—and for internal nodes, even this is not needed.

There is a way of looking at this result from the perspective of system design. If one
wants to have nodes managed locally, flows of projects should be divided by priority;
projects with a given urgency should go through nodes that handle only projects with
the same urgency.

We should note that the steady-state process sizes and other local variables must still
be verifiable (at least occasionally) by the corporation’s management to ensure that
divisions are using transfer prices set in accordance with the policy. However, as men-
tioned in the introduction, our main concern is with informational efficiency—when
does optimal pricing require minimal information aggregation? This is the question
that the theorem answers.

Theorem 3 can also be interpreted to say that managing companies engaged in tasks
of differing urgencies is harder than managing companies with a single urgency level,
for management can be decentralized in the latter but not generally in the former.
This, in turn, provides a formal basis for Michael Porter’s (1985) admonition against
companies becoming “stuck in the middle” by striving to serve both high-value and
cost-sensitive customers. Serving cost-sensitive customers entails relentless pressure
to minimize cost, while providing high value will often require fast response to cus-
tomer inquiries and needs. In the context of the theory, these customer segments
represent different urgencies and hence are difficult to manage together.

Lastly, we note that if urgencies are viewed as variables in the short run, then even
when a node processes only one urgency, it cannot be managed completely locally. The
urgency of the nodes that influence it must still be transmitted to it. In this case, the the-
orem shows that nodes processing only one urgency require less external information
than those managing multiple urgencies—one needs to send them only information
about the relevant urgency, but not about system-wide inflows.

Example Continuing the previous example, we compute the transfer prices and delays
at the nodes in the system. These are shown in Table 4. Note that the prices on
time are the same at all internal nodes, but vary when there is some inflow. This fits
with the discussion of the incentive role of the local price of time in this section—in
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Table 4 The local price of time and the delays in the system

Node Local price of time Time spent in queue Time to completion
Order taking 2.77 0.01 21

Customer service 1.94 2.01 11

Assembly 2.18 0.10 -

Parts A 2.18 0.10 -

Parts B 2.18 0.10 -

Assembly 2.18 9.05 -

Quality assurance 2.18 8.39 -

particular, how it changes when the node is incentivized by time penalties from outside
customers.

Mean time to completion is about a day for projects originating at Order Taking.
It is a weighted average of a day and a few hours at Customer Service—recall that
some projects are discharged immediately after being processed by Customer Service,
while others go into the Staging node.

Since B1 # B2, and both Order Taking and Customer Service clearly influence all
internal nodes (by Lemma 2), it is not possible to decentralize the system. Different
urgencies at Order Taking and Customer Service cause externalities to each other.

6 Response to external changes

An important question facing modern enterprises is how to respond flexibly and effi-
ciently to frequent changes in demands and prices (Fisher et al. 1994; Crawford et al.
2005; Cherbakov et al. 2005). Indeed, this challenge has driven new, service-oriented,
on demand approaches to production, resulting in firms well approximated by our
model. Thus, it is natural to consider how a system responds to external changes in
the context of the theory.

There is a way to analyze this question using the results we have derived above. In
Sect.4, we described a mechanism to translate the global incentives facing the firm
into local transfer prices. Once these prices are known, they determine each node’s
profit-maximizing behavior—in particular, the investments it makes in capacity. Con-
sequently, to describe the corporation’s response to external changes, it suffices to
characterize how they affect the local transfer prices. Such a characterization would
capture how demand shocks and price shifts alter the priorities, and hence the behavior,
of each part of the firm.

Theorem 4 The marginal change in the internal price of time at node n caused by a
change in inflow at a node m # n is:

8Xn _ 1 apn ,Bm — Xn

rm  pr 9w L —ra/(uap)’
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This rate of change is directly proportional to B, — xn, which is the amount by which
the urgency at node m exceeds the current internal price of time at node n.

The marginal change in the internal price of time at node n caused by a change in
inflow at node n is given by

xn _ 1 xn(1/itn = 3p/9rn)
ary P: 1 _rn/(/'an;:) '

The internal price of time at node n is nonincreasing in inflow at node n.

First, this theorem shows that the internal prices on time obtained in Sect.4 are
quite natural. Increasing the inflow of projects (at a location other than node n) that
have a higher urgency than the current internal price of time at node n increases the
price of time at node n. On the other hand, increasing the inflow of projects that have
a lower urgency than the current internal price of time at node n decreases the price of
time at this node. Moreover, the magnitude of the change in each case is proportional
to the magnitude of the difference between the current internal price of time and the
urgency of the increasing flow.

The reason for the second part of the theorem—that the internal price of time at node
n is nonincreasing in inflow at node n—is similar to the explanation after Theorem
3. Increasing the inflow at node n increases the external incentives to work quickly
(since the node has to pay the corporation’s delay costs for a larger share of projects),
which reduces the need for high internal prices on delays.

Theorem 5 The marginal change in the internal price of time at node n caused by a
change in urgency at a node m # n is

Ofn _ €
9Bm l_rn/(/inp;).

The marginal change in the internal price of time at node n caused by a change in
urgency at node n is given by

Ixn
9B

These formulas are interpretable. The quantity d x,, /98, is just the elasticity of the nth
process size with respect to the mth inflow divided by the fraction of the projects that
enter node n from within the system. It is also easy to see why x, should be invariant
to B,,. Since all the extra delay costs arising from increases in the urgency at node n are
already paid by node n to the outside customer ordering the project, it is not necessary
for this extra incentive to be conveyed through internal transfer prices.

7 Remarks on implementation of the analysis

To test and apply this model empirically, it is necessary to obtain estimates for the
vectors of input parameters: r, d, ¢, the matrix T of transfer rates, and the uptake
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parameters a and b. Fortunately, all of these can be observed, albeit with varying
degrees of difficulty.

To start the analysis, it is necessary to identify nodes. This would probably be done
using a company’s enterprise resource planning software, by examining the unit level
of that software. These component units can, in turn, be delineated using approaches
such as those outlined in Parnas (1972); Hagel and Singer (1999) and Cherbakov et al.
(2005). The rate parameters, namely r, d, and the transfer proportions per unit time in
the matrix T, can be observed simply and directly. For instance, to find the inflow rate
r,, one simply picks a convenient measuring interval and monitors how many projects
flow into a given node during that time, dividing by the interval length to find the rate.
To measure Ty,,,, one similarly tracks the number of projects per unit time that flow
from node n to node m, dividing by the total number of projects in processing at node
n. All such measurements are done many times and averaged. The capacities ¢ can
also be directly observed by noting the maximum number of projects that could be
handled simultaneously at each node. If the values of p* or q* are desired as a means
of testing the theory, they can often be observed by direct inspection of the number of
projects being processed and waiting in line, respectively. Alternatively, p*, q*, and
¢ can be estimated by fitting the model to the data generated by the flow of tasks and
their resolution—i.e., processing times, profits, etc.

At several points in the analysis, we made use of the elasticities of process sizes
with respect to inflows. Recall that these were defined as

re op,
€nm = — -

Pn 0rm
To find this quantity, it is necessary to measure or calculate dp/dr,,. This can be done
by taking many measurements of Ap/Ar,—that is, the change in the nth process
size brought about by a change in tne mth inflow—for small changes in r,,. Alterna-
tively, we can recall that S,,, = dp);/0r,, and that S can be obtained by inverting
M — T, whose entries we have already seen how to measure.

The moderately challenging quantities to observe are the uptake parameters a and b.
There are two approaches to this problem. First, consider the situation in which the
description of processing given in Sect. 2 is reasonable in the context of the particular
system, and the lag times can be observed. Then b, can be found as the slope of the
line which best approximates the plot of preprocessing delay versus 1 /g, for different
configurations of the system. The parameter @, can be determined analogously by
fitting a line to the plot of accommodation delays versus 1/(c, — pn).

On the other hand, the lag times may be difficult to measure. In that case, more
general fitting procedures can be used. In particular, one would collect readings of
Cn»> Pns qn, and the uptake rate in various configurations of node n, and then use stan-
dard statistical tools to find the values of a, and b, so that the uptake rate is well
approximated by

qn(Cn — pn)
anqn + by (cn — pn) )
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Finally, it may be desirable to measure completion times t to find out whether the
model produces reasonable predictions. This can be done by tracking projects and
recording where and when they enter and exit the system, via ticketing or timestam-
ping, depending on what is moving through the system.

8 Conclusion

In order to model some aspects of the problem of optimally allocating resources in a
firm, we have presented a flow model of corporations based on queuing of tasks and
delayed uptake. The perspective of the model is that most of the tasks performed by
companies can be treated in a similar way: as generating activity of processing nodes
or workstations, after some time spent in queue. Delayed uptake from the queues,
because it makes the key rates smooth in the endogenous variables, actually simplifies
standard queuing models dramatically.

We derived the optimal capacities in the context of the model. These satisfy
an interpretable elasticity condition. The fact that the quantities in the formula are
tracked using enterprise resource planning software used by corporations makes the
formula a realistic starting point for testing the model empirically or for optimizing
capacities.

We investigated two large questions about the model. First, when do transfer
prices exist that induce autonomous node operators to choose efficient levels of
investment? The surprising answer is: always. Moreover these transfer prices are
independent of many of the system primitives and are characterized with a simple
formula. Second, we considered when these prices depend only on local informa-
tion; that is, when can the system be decentralized? Decentralization is possible
when a node shares the same urgency as other nodes processing the same flow
of projects. The sharing of urgency is clearly necessary for decentralization
since different urgencies will cause externalities to each other. The remarkable
part of the theorem is that this condition is also sufficient for decentralization.

There are several natural extensions of this project. First, we would like to con-
sider more general forms for the flow rate from the queue to the processor. In this
paper, we assumed that the flow takes a special (though fairly natural) form. This
demonstrated the simplification arising from making the flow rate a smooth function
of the endogenous variables and allowed several questions to be answered precisely.
We think many of the benefits of this smoothing approach would carry over to a more
general setting.

A second direction we would like to explore is allowing several queues to feed into
the same processor, or several processors to accept flows from the same queue, or both.
This would permit the analysis of system design questions—such as those tackled in
Beggs (2001) and Arenas et al. (2006)—while also allowing a general, network-based
specification of the processing procedure. For example, one could ask what happens
when multiple internal suppliers compete to sell the same input to a node that needs
it. We view this paper as a first step toward that goal, since it illustrates the solution
of several optimization and incentive problems in a special case of that more general
model.
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Appendix: Proofs of Theorems and Lemmas

Proof of Theorem 1 To show the “only if”, suppose there is a steady state. We will
show that the steady state process sizes are uniquely determined and nonnegative. To
this end, we first claim that M — TT has a strictly dominant diagonal. That is, there is
a diagonal matrix D (in this case the identity matrix) such that the magnitude of each
diagonal entry of D (M — TT) exceeds the sum of the magnitudes of the other entries

in its column. This is seen as follows. For each n, we have u,, = d,, + Zrlx:l Tyum, SO
that

Mn_Tnn:dn+ZTnm> ZTnms

m#n m#n

since d, > 0 by hypothesis. This establishes the dominance of the diagonal. Conse-

quently, (M — TT)_l exists (McKenzie 1960, Theorem 1). In addition, M — TT isa
Z-matrix, i.e., a matrix all of whose off-diagonal entries are non-positive. It follows
that its inverse has no negative entries (Berman and Plemmons 1979, Theorem 2.3).
Along with the fact that all the inflows r are nonnegative, this implies that the vector
on the right side of (6) is well-defined and all of its entries are nonnegative. The fact
that this is the only possible steady state was argued before the statement of equation
(6).

Now we show that ¢, > p}(1 — a,u,). The only possible solution for the steady
state queue sizes was deduced above in (7). Suppose, to get a contradiction, that
cn < pi(1 — appy) for some n. Then the denominator in the expression of (7) for g¥
is zero or negative. In the case p; < c¢,, the expression for ¢, is undefined or negative,
which cannot happen in a steady state by definition. In the case p;; > c,, no steady
state can occur because the processors cannot accommodate the steady state process
sizes. Finally, in the case p, = c,, (7) gives that g, is either undefined (so we are
done) or zero. But if ¢,/ = 0, then (1) indicates that a steady state is impossible unless
all the process sizes are zero, which contradicts (6), using the assumption that r % 0
and the fact that M — TT is invertible. So ¢, < pi(l — appy,) is impossible and the
forward implication is done.

To prove the “if: if ¢, > p}(1 — a,u,) then by inspection of (7) we have that
q, is well-defined and nonnegative; direct computation shows that this choice of g,
along with the p* of (6), results in p, = ¢, = 0 for each n, i.e., the steady state.

To prove that the steady state is locally stable, we will linearize the system by find-
ing the Jacobian matrix of (p1, ..., Pn, 1, .- - q'n)T at the steady state configuration.
Defining

k, =a |: q,f ]2 and ¢, =05b |: cn—p: ]2
" Langy + bulen — pi) " Langy + balen — ) ]
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the Jacobian matrix is, by direct computation,

[ —k1 — 11 £ ]
—ko — 2 %)
J— —ky — 1N 5
ki +Tn Ty - Ty —£4 '
Ti» ko +Tp --- ) )
| Tin Ty - kn+Tyn —lN |

where the blank regions are filled with zeros. We will show the matrix has a strictly
dominant diagonal. To this end, we claim there exist constants &p, . .., &x such that
the following inequality holds:

2N
En|Jmm| > Zg,,|Jnm| foreachm € {1,...2N}. (17)

n=1

First, observe that for each m € V, we have k,, + ;> ki + Zflv:] Tnn because, by
definition, u,, = d, + Zfl\’:l Ton > ZI]L 1 Tun; the last inequality uses the assump-
tion d,,, > 0. Then there are constants &, ..., &y < 1 such that, for each m € V),
Enkm + m) > ki + 2111\]:1 Tnn. Setting Ey41 = --- = &y = 1 satisfies (17).
Consequently, J is negative definite (McKenzie 1960, Theorem 2). This implies that
the system is locally stable around the steady state (Jordan and Smith 1999, Theorem
8.15). O

Proof of Lemma 1 Expanding (12) using (7) and (10) yields

N

bkukpk (ck — pp)
K(c) = (wka + Vi
; — pi (1 + agpur)

Bir i s b (Cm — P;Z) ] (18)
KR Lo e (U dpan) ‘

m=1

Optimal capacities c’f, ..., ¢} which minimize K, if they exist, must satisfy for each
n the first order condition:

2
0K a,b *
0= — 0, — nOn¥Vn (I/ann) . anb nﬂnpn 2 ZSnkﬁk"k

2
den [en — PEQ +anun)]”  [en — P+ anpn)]” o
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The equation reflects the fact that p is determined independently of capacity. We
solve these equations to obtain

N
anby, p¥
i =pr(L+anun) + pn | — (VnPZ + ZSnkﬁkrk)-

Wy =1

Let ¢* denote the column vector of these capacities.

Note that the expression whose square root is taken above is obviously a nonnega-
tive number and so ¢ is well-defined. Write ¢, := p;5 (1 + a ). Pick an arbitrary
x € D. Define the compact set

Qs.A :=[51+5,51+A]X~~~X[5N+5,5N+A].

We claim § > 0 can be chosen sufficiently small and A can be chosen sufficiently
large so that all the following conditions hold:

1. xe Qg,A;
2. ¢*e QS,A;
3. K(c)> K(c*)forallc € 025 A.

It is obvious how the first two conditions can be simultaneously satisfied. To get the
third, note that for any point ¢ € 325, a, there exists an n such that ¢, = ¢, + A or
¢n = Cp + 8. In the former case, A can be chosen sufficiently large so that the w;c,
term in (18) is larger than K (c*). In the latter case, § can be chosen small enough to
make the denominator ¢, — p;i (1 + a,u,) in (18) arbitrarily small, so that the asso-
ciated B,r,t, term of the total cost K is arbitrarily large, and in particular larger than
K (c*). Indeed, we can ensure these things for all n simultaneously. Since all the terms
being summed in (18) are nonnegative, this suffices to show that condition 3 can be
satisfied. Finally, observe that the condition can be satisfied without breaking either
of its predecessors by simply taking the smallest § and the largest A required by any
of the three conditions.

Since the cost K is a continuously differentiable function of the capacities ¢, the
Weierstrass extreme value theorem guarantees that all global minima of K over the
compact set 25 o occur either at critical points of K that lie inside 25 A, or otherwise
on the boundary 925 A. By the first paragraph of this proof, and condition 2 above,
there is exactly one critical point in €25 A, namely ¢*. Condition 3 ensures that the
global minimum of K on 25 A does not occur on the boundary, so it must occur at ¢*.
Hence, by definition of the global maximum, K (¢*) < K(x). The argument works
for an arbitrary fixed x € D, so a global minimum of K over D occurs at ¢*. The
first paragraph of the proof entails that at all other possible steady state capacities,
dK /dc, is nonzero for some n, so none of these points can be even local minima,
and this establishes that the global minimum occurs at exactly one point in D, namely
at c*. O
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Proof of Theorem 2 Expanding ¢,, t,, and 7, in (15) using (7), (8), and (10) gives

N
bnanp;zk(Cn _p:;) |: bmll«m(cm — p:;’) ]
K, (cp) = wycn + + Par S +l
n(Cn) = Onln + Yo — pi(1+ anpin) P "mZ; " Lem = P (1 + amim)

1 bupin(cn — piy) :|
+ n =) — — 1.
Xn(MnPn 2 |:Cn - P?{(l + anpn)

n

The first-order condition for cost minimization is

0K, B anbp pn pyy [an/vnp;lk + BurnSuntin + Xn(npl — Vn)]

0= = wy, . 5
[Cn —py(l+ arz//Ln)]

T ey

From this, we find that the capacity cl which solves the first order conditions is

anbn in p;, [(Vn + Xn)n Py + BnbintnSnn — ann]
wn ’

¢ = il + anpn) +\/ (19)

The one-dimensional case of the proof of Lemma 1 establishes that this is the capacity
corresponding to the unique global minimum of the local cost function K.

As mentioned in the text, the local operators will maintain optimality if and only
if the local prices x, are set so that the locally optimal capacity c; matches the glob-
ally optimal capacity c};. Solving cZ = ¢ using expressions (13) and (19) yields the
formula for ;.

The system of transfer prices is balanced by the description of payments among
nodes: the amount sent by node m for node n’s services is exactly the amount received
by node n.

Finally, we verify that the expression for x, is well defined. It suffices to verify that
the denominator in (16) is nonzero. Note that, using (4),

N
n _ Zm:l Tmnp;:,
WPy o+ SN Taapi

By assumptions stated in Sect.2, the process size p; is nonzero for each m, so the
numerator is nonzero. By an assumption stated at the beginning of Sect. 4, T}, is
nonzero for some m, so that the denominator is nonzero. O

Proof of Lemma 2 Recall from Sect.2 that S,,,, = dp);/0ry,, where S = (M — TT) -
We will show that S,,;,, > 0 if and only if there is a sequence of nodes

ny=m,no,N3,..., 00 =n

such that Tojnjpy > Oforalll <j < £.
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First, we can find an s > 0 and a nonnegative matrix B such that
M- T" =51 -B.

Moreover, all off-diagonal entries of B match those of TT, and we can choose s and B
so that B has only positive entries on its diagonal. By Berman and Plemmons (1979,
p. 138), the diagonal dominance of M — T ensures that the spectral radius of B is at
most s. Then by a standard result on the Neumann series (Meyer 2000, p. 618), we
may write

1 o
S = . Z B/s)k. (20)
k=0

Denote by B,(l],(,z the entry in the (n, m) position of B By (20), Sy, is nonzero if
and only if B,(,]f,z is nonzero for some k.
By a simple induction argument,

k
B;gnz = Z Bnnz Bn2n3 s Bnk—lm‘
ny,..,ng_1€V

Since the off-diagonal entries of B match those of TT (and by our conditions on B),
this sum is nonzero if and only if

2 . Tmnk—l Tnk—znk—3 T Tnzn

is nonzero, where we have reversed the order of indices (because of transposition) and
the order of the factors in each summand. This sum is nonzero for some k if and only
if the condition in the statement of the lemma holds. O

Proof of Theorem 3 Suppose the hypothesis holds. Consider formula (16), which we
rewrite as

(ZI](\I:] Snk,Bkrk)/pZ — € B
Xn = " 21
1 - Vn/(linpn

Whenever ry # 0 and Sy # 0, B is equal to the common urgency of the nodes that
influence node n; we will call this common urgency S;,. Then

N N
> SukBirk = Bu D Sur = Bupj,

k=1 k=1

@ Springer



B. Golub, R. P. McAfee

where the last equality follows from the defintion of S and from (6). Then, simplifying
(21), we obtain

X = .gn — €nnPn
T =/ (ap)

Since only constants and local parameters appear on the right, node n can be managed

separately from the rest of the system. O

Proof of Theorem 4 A tedious but straightforward calculation shows that if m # n,
then

0 Xn _ 1 3pn Bm — Xn

rm Pt rm L —rn/(uapi)

From this, the claims about proportionality relationships follow immediately.
Moreover,

Oxn _ 1 xa(l/ptn — 0py,/0rs)

arn  pk 1 —ru/(npi)

To show this quantity is not positive, it suffices to establish that ML — % < 0 or,
equivalently, % - n = Spnptn > 1. Note that u, is the entry in the (n, n) position
of the matrix M — TT, using the assumption that 7,,, = 0. Since ST and M — TT are
inverses, it follows that their product is the identity matrix. In particular, writing out
explicitly the expression for the entry in the (n, n) position of their product, we get

1= Sunitn—2,, £n Sum Tmn - Since S has no negative entries by the proof of Theorem
1, it follows that the summation is nonnegative and so S,, 1, > 1, as desired. O
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